Training materials

- Ensembl training materials are protected by a CC BY license
- http://creativecommons.org/licenses/by/4.0/
- If you wish to re-use these materials, please credit Ensembl for their creation
- If you use Ensembl for your work, please cite our papers
- http://www.ensembl.org/info/about/publications.html

EMBL-EBI

Browsing Genes and Genomes with Ensembl

Ben Moore

Ensembl Outreach

EMBL-EBI

UC Irvine - 31st October 2022

Structure

<u>Presentation:</u> What the data/tool is How we produce/process the data

<u>Demo:</u> Getting the data Using the tool

Follow along if you want to

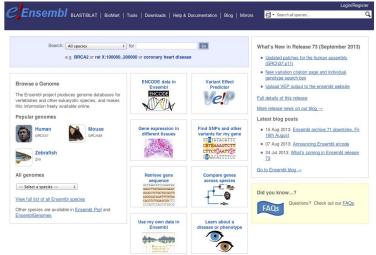
Exercises:

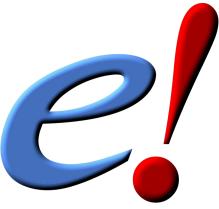
Available on the EBI Train Online website Trying things out for yourself Going beyond the demo

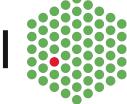
Course materials

training.ensembl.org

- Presentations
- Demonstrations
- Exercises and answers
- Living Document


Objectives

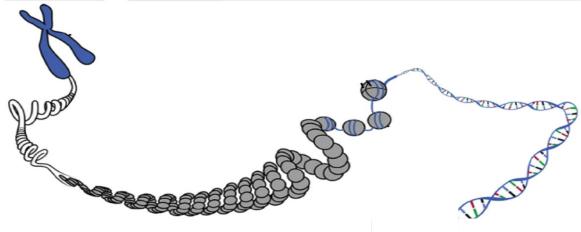

- What is Ensembl?
- What type of data can you get in Ensembl?
- How to navigate the Ensembl browser website.
- Where to go for help and documentation.



Exploring the Ensembl genome browser

Why do we need genome browsers?

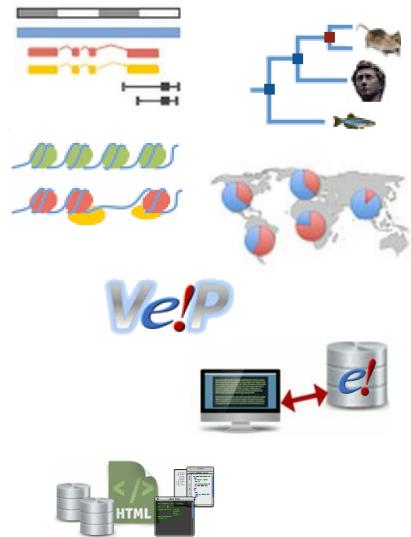
1977: 1st genome to be sequenced (5 kb) 2004: finished human sequence (3 Gb)

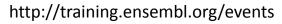

Why do we need genome browsers?

CGAAGACATGCTGATGGGAATTACCAGGCGGCGTTGGTCTCTAACTGGAGCCCTCTGTCCCCACTAGCCACGCGTCACTGGTTAGCGTGAT GAAACTAAATCGTATGAAAATCCTCTTCTCTAGTCGCACTAGCCACGTTTCGAGTGCTTAATGTGGCTAGTGGCACCGGTTTGGACAGCACA GTTTTACCTCAGTCACATAATAAGGAATGCATCCCTGTGTAAGTGCATTTTGGTCTTCTGTTTTGCAGACTTATTTACCAAGCATTGGAGGA ATATCGTAGGTAAAAATGCCTATTGGATCCAAAGAGAGGGCCAACATTTTTTGAAAATTTTTAAGACACGCTGCAACAAAGCAGGTATTGACAA AAACTGTTCCTTATGTGTGTGTATAAATCCAGTTAACAACATAATCATCGTTTGCAGGTTAACCACATGATAAATATAGAACGTCTAGTGGAT AAGAGGAAACTGGCCCCTTGACTAGCAGTAGGAACAATTACTAACAAATCAGAAGCATTAATGTTACTTTATGGCAGAAGTTGTCCAACTT TTGGTTTCAGTACTCCTTATACTCTTAAAAATGATCTAGGACCCCCGGAGTGCTTTTGTTTATGTAGCCTTACCATATTAGAAATTTAAAAACT AAGAATTTAAGGCTGGGCGTGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGCGGATCACTTGAGGCCAGAAGTTTGA ACGGGAGGTGGAGGCAGGAGAATCGCTTGAACCCTGGAGGCAGAGGTTGCAGTGAGCCAAGATCATGCCACTGCACTCTAGCCTGGGCCAC TAGCATGACTCTGTCTCAAAACAAACAAACAAACAAAAAACTAAGAATTTAAAGTTAATTTACTTAAAAAATAATGAAAGCTAACCCATTGC AAATAGAGATAGCTGGATTCACTTATCTGTGTCTAATCTGTTATTTTGGTAGAAGTATGTGAAAAAAATTAACCTCACGTTGAAAAAAGGA ATATTTTAATAGTTTTCAGTTACTTTTTGGTATTTTTCCTTGTACTTTGCATAGATTTTTCAAAGATCTAATAGATATACCATAGGTCTTTC CCATGTCGCAACATCATGCAGTGATTATTTGGAAGATAGTGGTGTTCTGAATTATACAAAGTTTCCAAAATATTGATAAATTGCATTAAACT TTTTAAAAAATCTCATTCATTAATACCACCATGGATGTCAGAAAAGTCTTTTAAGATTGGGTAGAAATGAGCCACTGGAAATTCTAATTTTC TTTGAAAGTTCACATTTGTCATTGACAACAAACTGTTTTCCTTGCAGCAACAAGATCACTTCATTGATTTGTGAGAAAATGTCTACCAAA TATTTAAGTTGAAATAACTTTGTCAGCTGTTCTTTCAAGTAAAAATGACTTTTCATTGAAAAAATTGCTTGTTCAGATCACAGCTCAACAT(GCATTGAGCTTCGAAATTAATTTTTTACTGCTTCATTAGGACATTCTTACATTAAACTGGCATTATTATTACTATTATTTAACAAGGACAC TCAGTGGTAAGGAATATAATGGCTACTAGTATTAGTTTGGTGCCACTGCCATAACTCATGCAAATGTGCCAGCAGTTTTACCCAGCATCATC TTTGCACTGTTGATACAAATGTCAACATCATGAAAAAGGGTTGAAAAAGGAATATTTTAATAGTTTTCAGTTACTTTATGACTGTTAGCT http://training.ensembl.org/events

Ensembl- unlocking the code

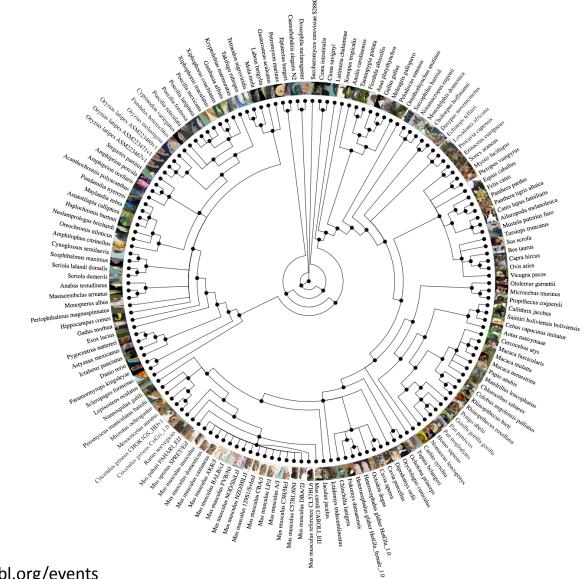
- Genomic assemblies automated gene annotation
- <u>Variation</u> Small and large scale sequence variation with phenotype associations
- *<u>Comparative Genomics</u>* Whole genome alignments, gene trees


- <u>Regulation</u> - Potential promoters and enhancers, DNA methylation http://training.ensembl.org/events



Ensembl Features

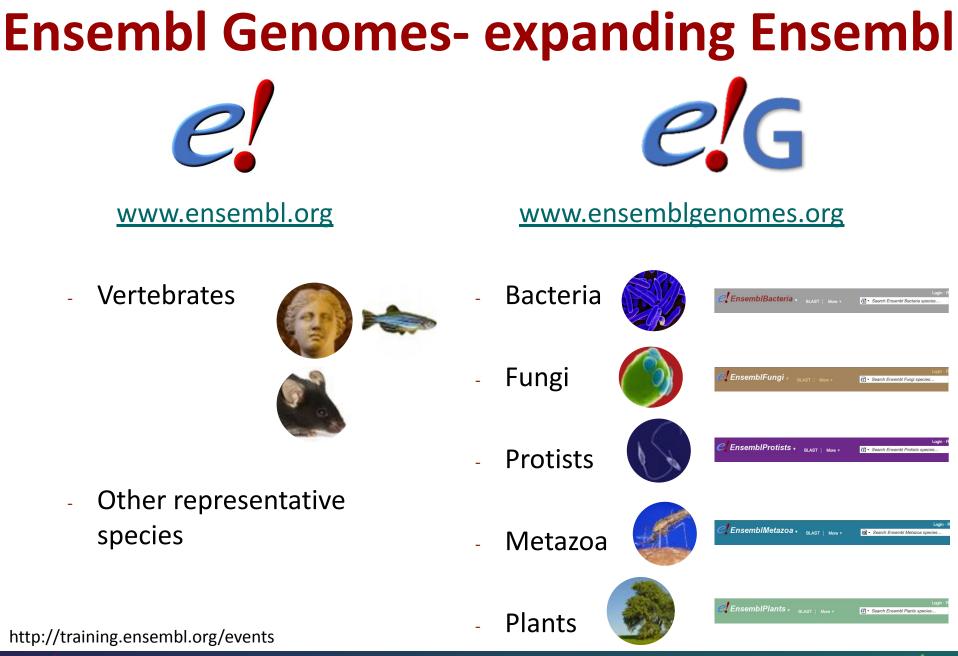
- Gene builds for ~300 species
- Variation, comparative genomics and regulatory data display
- Display of user data
- Tools for data processing, e.g VEP
- BioMart (data export)
- Programmatic access via the APIs
- Completely Open Source



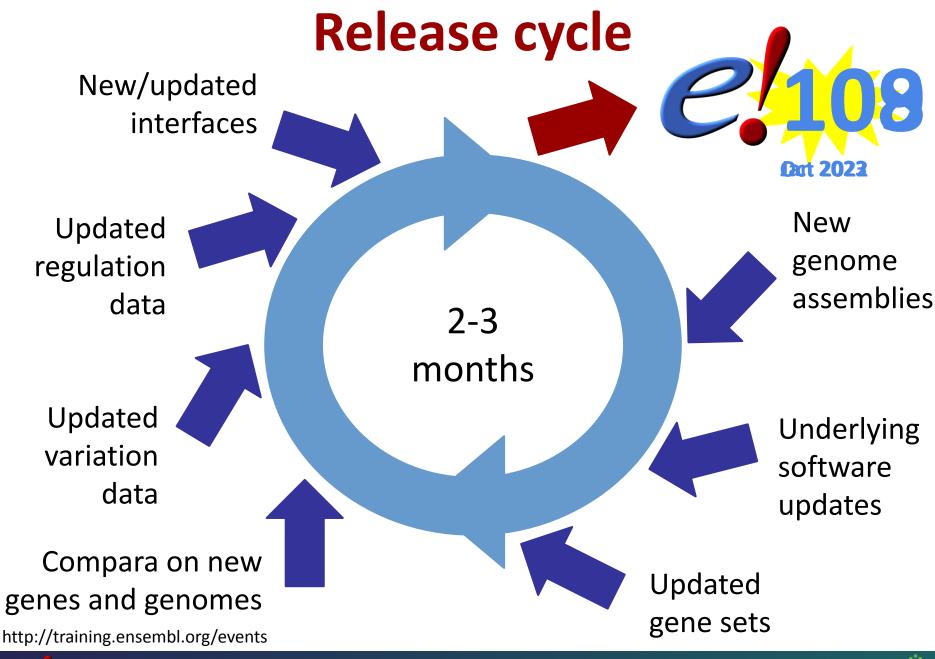
Ensembl- access to 300+ genomes

Ensembl Genomes- expanding Ensembl

www.ensembl.org


- Vertebrates

- Other representative species



EMBL-EBI

EMBL-EBI

What is a genome assembly?

Sequence reads

CGGCCTTTGGGCTCCGCCTTCAGCTCAAGA

CAGCTGTCCCAGATGAC ACTTAACTTCCCTCCCAGCTGTCC

CAGATGACGCC

GGGCTCCGCCTTCAGCTC

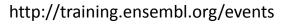
TCCCAGCTGTCCCAGATGACGCCAT AACTTCCCTCCCAGCT

CGGCCTTTGGGCTCC

TCCGCCTTCAGCTCAAGACTTAACTTC

Match up overlaps


CGGCCTTTGGGCTCCGCCTTCAGCTCAAGA AACTTCCCTCCAGCT CAGATGACGCC TCCGCCTTCAGCTCAAGACTTAACTTC TCCCAGCTGTCCCAGATGACGCCAT GGGCTCCGCCTTCAGCTC ACTTAACTTCCCTCCCAGCTGTCC CGGCCTTTGGGCTCC CAGATGAC

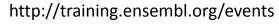

Genome assembly

Genome contigs

BL102 AL476

CM553

IM768


Human genome assemblies

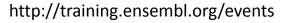
- GRCh38 (aka hg38)
 - <u>www.ensembl.org</u>
 - Most up-to-date and supported
- GRCh37 (aka hg19)
 - Greater gap length than GRCh38
 - grch37.ensembl.org
 - Limited data and software updates
- NCBI36 (aka hg18)
 - 150,000 gaps
 - ncbi36.ensembl.org
 - No longer updated

Hands on

- We're going to look at the Ensembl homepage and how to find information about the species and genome assemblies in Ensembl.

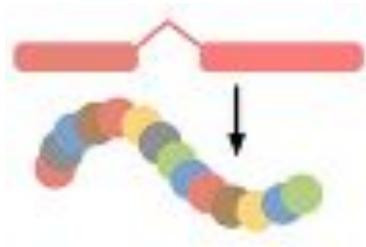
- There are more exercises than we have time for: pick and choose the ones most relevant to your work and you're welcome to finish them in your own time.

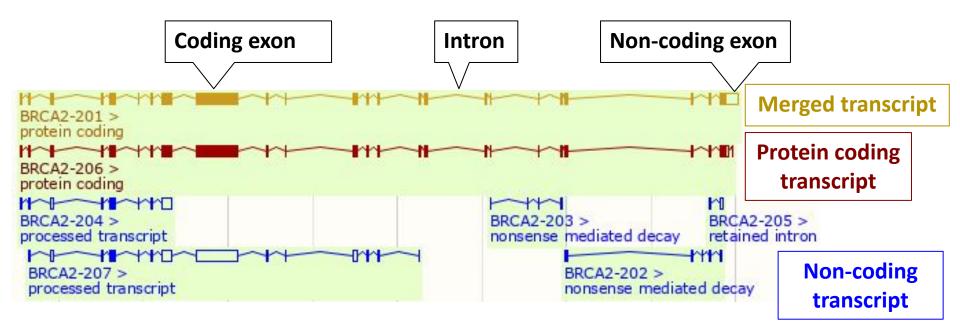
Exploring genomic locations: the Region in Detail view



Hands on

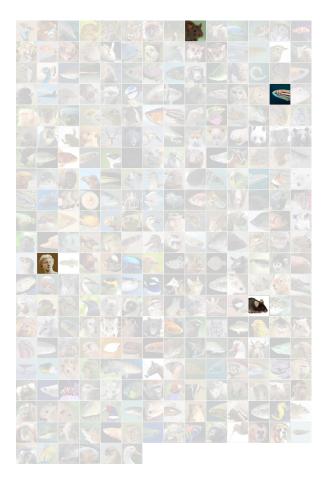
We're going to look at a region of the human genome,
 4:122868000-122946000, and manipulate the view to see the data we're interested in.


- There are more exercises than we have time for: pick and choose the ones most relevant to your work and you're welcome to finish them in your own time.


Genes and Transcripts

Gene views

Ensembl and Havana annotation e. Ensembl


Automatic annotation

http://training.ensembi.o events

Manual annotation

Automatic gene annotation

- Genome-wide determination using the Ensembl automated pipeline
- Predictions based on experimental (biological) data

Biological Evidence

- International Nucleotide Sequence databases
 - cDNAs
 - ESTs
 - RNAseq

Protein sequence databases

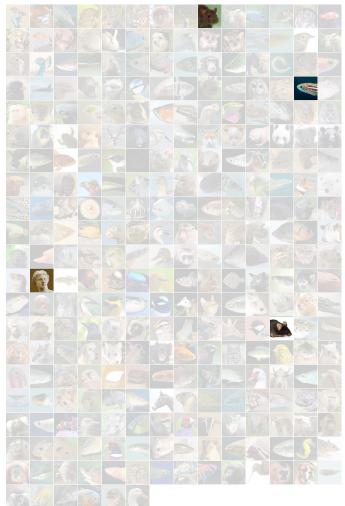
- Swiss-Prot: manually curated
- TrEMBL: unreviewed translations

Homologous sequences

Infer genes from homology to other species

predict genes in by mapping cDNAs/proteins from

genome.



Manual gene annotation

- Gene determination on a case-by-case basis by a person
- Uses data from databases and papers:
 - INSDC databases
 - RNAseq
 - long read transcriptomic data
 - intron data
 - CAGE
 - PolyA-Seq
 - Mass Spec
 - ONT
 - publications

Gene annotation: Manual

Benefit

- More comprehensive
- More genes and transcripts overall -
- Require less evidence (quality > thresholds)
- More accurate for difficult regions: -
 - UTRs
 - Splice sites
 - Single exon transcripts
 - Exceptions -(i.e. immunoglobins)

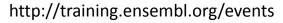
- Slower
- Small scale

Disadvantages

Golden transcripts

Identical annotation *e*!Ensembl havana

- Higher confidence and quality


GENCODE

- The GENCODE gene set is made up of:
 - The merged set of Ensembl automatically annotated genes and Havana manually annotated genes
- GENCODE is the default gene set used by gnomAD/ExAC, ENCODE, 1000 Genomes and other major projects.

EMBL-EBI

MANE transcripts

- Matched Annotation from the NCBI and EBI (MANE) project
- Biologically relevant transcript set with 100% identity between resources (including non-coding regions)

~100% of human protein coding transcripts

Which transcript should I use?

Name 🔺	Transcript ID	bp 💧	Protein 🔺	Biotype 🔺	CCDS	UniProt Match	RefSeg Match	Flags
ESRRA-201	ENST0000000442.11	2274	423aa	Protein coding	<u>CCDS41667</u> &	P11474-1	<u>NM_004451.5</u> &	TSL:1 GENCODE basic APPRIS P2 MANE Select v0.91
ESRRA-202	ENST00000405666.5	2283	423aa	Protein coding	CCDS41667 &	P11474-1	-	TSL:1 GENCODE basic APPRIS P2
ESRRA-203	ENST00000406310.6	2293	<u>506aa</u>	Protein coding	-	P11474-2		TSL:1 GENCODE basic
ESRRA-204	ENST00000467987.1	610	No protein	Retained intron	-	-		TSL:3
ESRRA-205	ENST00000468670.2	738	<u>108aa</u>	Protein coding	-	F5GWT5 &		CDS 3' incomplete TSL:2
ESRRA-206	ENST00000539594.5	747	<u>162aa</u>	Protein coding	-	F5H0E9 &		CDS 3' incomplete TSL:3
ESRRA-207	ENST00000545035.1	677	<u>198aa</u>	Protein coding		H0YGT3 &		CDS 5' incomplete TSL:2
ESRRA-208	ENST00000677967.1	2266	422aa	Protein coding	CCDS60830 &	-	-	GENCODE basic APPRIS ALT1

MANE Select v0.5	'Matched Annotation NCBI and Ensembl' Transcript with 100% identical annotation with RefSeq
APPRIS P1	APPRIS principal isoform: The major isoform(s) from combining protein structural information, functionally important residues and evidence from cross-species alignments
GENCODE basic	"Complete" transcripts (where a gene has complete transcripts)
TSL:1	Transcript support level: Scored 1-5 for quality (1= best)

http://training.ensembl.org/events http://www.ensembl.org/info/genome/genebuild/transcript_quality_tags.html

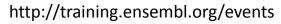
EMBL-EBI

Ensembl stable IDs

Ensembl Gene ID Ensembl Transcript ID Ensembl Peptide ID Ensembl Exon ID Ensembl Regulatory region ID

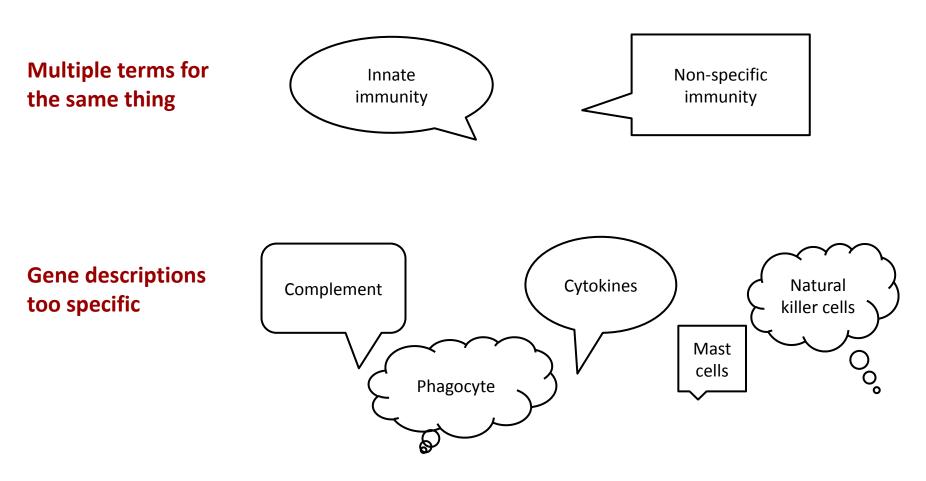
For non-human species a suffix is added:
 MUS (*Mus musculus*) for mouse ENSMUSG###
 DAR (*Danio rerio*) for zebrafish: ENSDARG###

http://www.ensembl.org/info/genome/stable_ids/index.html



Hands on

- We're going to look at an Ensembl gene, *UQCRQ*, and find out information about it and its transcripts.

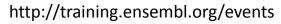

 There are more exercises than we have time for: pick and choose the ones most relevant to your work and you're welcome to finish them in your own time.

Why Gene Ontology (GO)?

GO terms form a controlled vocabulary

GO:0045087 - innate immune response

Innate immune responses are defense responses mediated by germline encoded components that directly recognise components of potential pathogens.



Hands on

- We're going to look at an Ensembl gene, *UQCRQ*, and find out information about it and its transcripts.

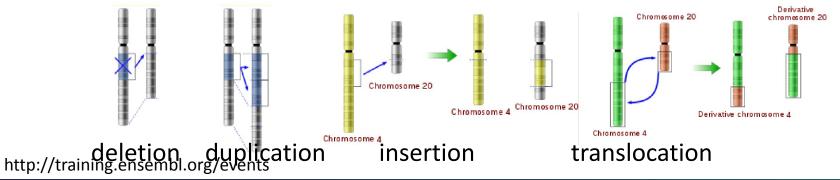
 There are more exercises than we have time for: pick and choose the ones most relevant to your work and you're welcome to finish them in your own time.

Variation

Outline

- Classification of variants
- Species and sources of variation
- Browsing variation data
 - Gene tab
 - Location tab
 - Variation tab
- Variant Effect Predictor

Variation types


1) Small scale in one or few nucleotides of a gene

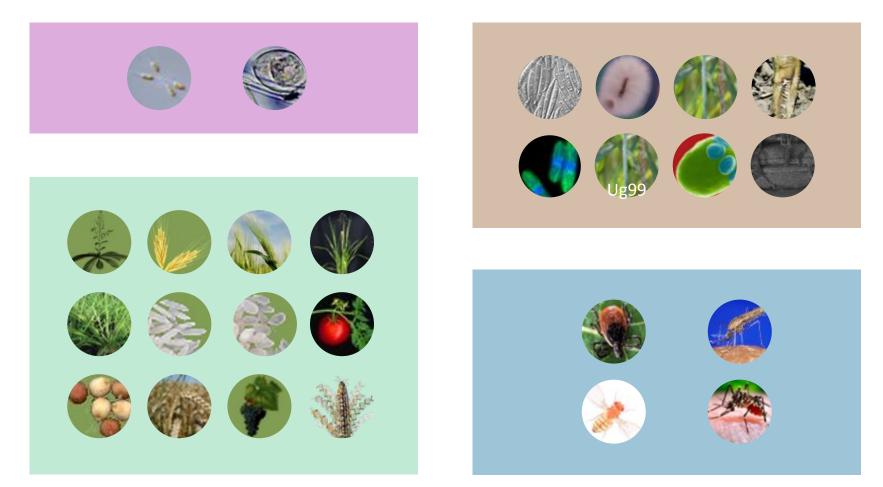
- Small insertions and deletions (DIPs or indels)
- Single nucleotide polymorphism (SNP)

	A	G	A	С	Т	Т	G	A	C	C	т	G	Т	С	Т	-	A	A	C	т	G	G	A	
••	т	G	A	С	Т	Т	G	A	С	—	т	G	Т	С	Т	G	A	A	C	G	G	G	A	

2) Large scale in chromosomal structure (structural variation)

- Copy number variations (CNV)
- Large deletions/duplications, insertions, translocations

24 species with variation data


Cat Fells catus	3.6 M	Opossum Monodelphis domestica	1.1 M
Gallus gallus	24 M	Orangutan Pongo abelli	10 M
Chimpanzee Pan troglodytes	1.6 M	Sus scrofa	67 M
Bos taurus	104 M	Platypus Ornithorhynchus anatinus	1.3 M
Canis lupus familiaris	5.9 M	Rat Rattus norvegicus	5 M
Gibbon Nomascus leucogenys	1.1 M	Sheep Ovis arles rambouillet	61 M
Goat Capra hircus	37 M	Sheep (texel) Ovis aries	61 M
Horse Equus caballus	21 M	Tetraodon Tetraodon nigroviridis	902 K
Human Homo saplens	679 M	Turkey Meleagris gallopavo	9 K
Macaque Macaca mulatta	53 M	Zebra finch Taeniopygia guttata	1.7 M
Mouse Mus musculus	84 M	Zebrafish Danio rerio	17 M

http://www.ensembl.org/info/genome/variation/species/sources_documentation.html

Species with variation data in Ensembl Genomes

Where does the data come from?

The Ensembl variation process

http://www.ensembl.org/info/genome/variation/index.html

Ensembl variation process: Import

Import variant data from

publicly available archives

and data repositories

dbSNP Short Genetic Variations

COSMIC

The core of COSMIC, an expert-curated database of somatic mutations

<u>Cancer Gene Census</u> A catalogue of genes with mutations that are causally implicated in cancer

http://www.ensembl.org/info/genome/variation/species/sources_documentation.html

Ensembl variation process: QC

- Mapping to reference assembly
 GRCh37→ GRCh38
- Checks on alleles
- Checks for IUPAC ambiguity codes

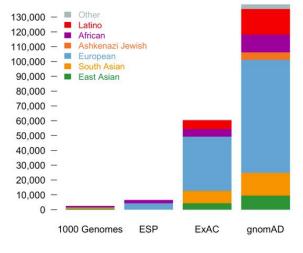
Excluding 'suspect' variants

http://www.ensembl.org/info/genome/variation/prediction/ variant_quality.html#quality_control

Ensembl variation process: Linked data

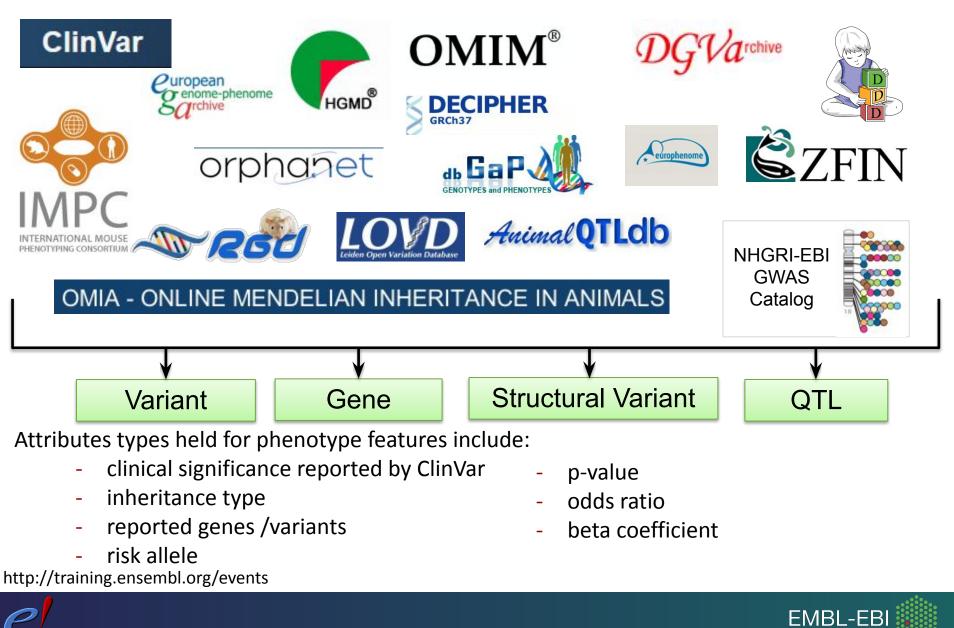
Import 'value added' data

- Allele frequencies
- Phenotype/disease
- Publication data



Linked data: Allele Frequencies

- 1000 Genomes: worldwide healthy WGS
- gnomAD: mixed disease/healthy WGS and exomes, skewed to most studied populations (included ExAC)
- UK10K: UK-wide disease exomes
- TOPMed: disease WGS
- NCBI Allele Frequency Aggregator (ALFA)



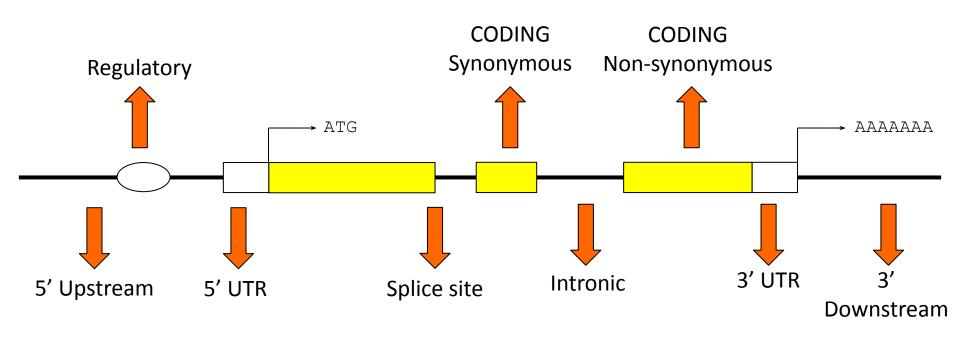
EMBL-EBI

Phenotype and Disease Data

Ensembl variation process: Analysis

Ensembl predicts:

- Variant consequences
- Protein function prediction
- Linkage disequilibrium data
- Variant conservation across species


Phylogenetic context

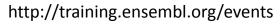
http://www.ensembl.org/info/genome/variation/prediction/index.html

Variation consequences

Consequence terms

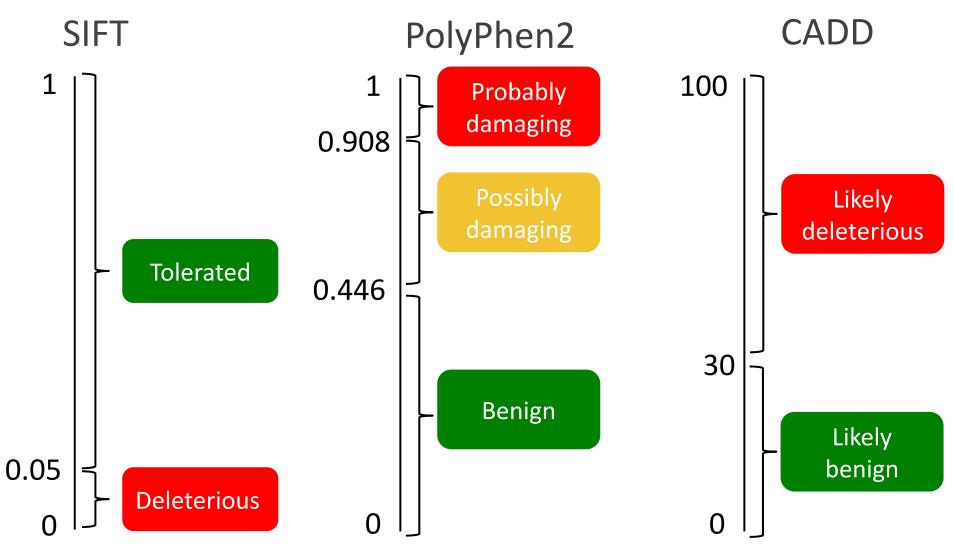
SO term	SO description	SO accession	Old Ensembl term
transcript_ablation	A feature ablation whereby the deleted region includes a transcript feature	SO:0001893	Transcript ablation
splice_donor_variant	A splice variant that changes the 2 base region at the 5' end of an intron	SO:0001575	Essential splice site
splice_acceptor_variant	A splice variant that changes the 2 base region at the 3' end of an intron	SO:0001574	
stop_gained	A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a shortened transcript	SO:0001587	Stop gained
frameshift_variant	A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or deleted is not a multiple of three	SO:0001589	Frameshift coding
stop_lost	A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript	SO:0001578	Stop lost
nitiator_codon_variant	A codon variant that changes at least one base of the first codon of a transcript	SO:0001582	Non synonymous coding
nframe_insertion	An inframe non synonymous variant that inserts bases into in the coding sequence	SO:0001821	
nframe_deletion	An inframe non synonymous variant that deletes bases from the coding sequence	SO:0001822	
nissense_variant	A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the length is preserved	SO:0001583	
ranscript_amplification	A feature amplification of a region containing a transcript	SO:0001889	Transcript amplification
splice_region_variant	A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the intron	SO:0001630	Splice site
ncomplete_terminal_codon_variant	A sequence variant where at least one base of the final codon of an incompletely annotated transcript is changed	SO:0001626	Partial codon
synonymous_variant	A sequence variant where there is no resulting change to the encoded amino acid	SO:0001819	Synonymous coding
top_retained_variant	A sequence variant where at least one base in the terminator codon is changed, but the terminator remains	SO:0001567	
oding_sequence_variant	A sequence variant that changes the coding sequence	SO:0001580	Coding unknown
nature_miRNA_variant	A transcript variant located with the sequence of the mature miRNA	SO:0001620	Within mature miRNA
_prime_UTR_variant	A UTR variant of the 5' UTR	SO:0001623	5prime UTR
_prime_UTR_variant	A UTR variant of the 3' UTR	SO:0001624	3prime UTR
ntron_variant	A transcript variant occurring within an intron	SO:0001627	Intronic
MD_transcript_variant	A variant in a transcript that is the target of NMD	SO:0001621	NMD transcript
on_coding_exon_variant	A sequence variant that changes non-coding exon sequence	SO:0001792	Within non coding gene
c_transcript_variant	A transcript variant of a non coding RNA	SO:0001619	
pstream_gene_variant	A sequence variant located 5' of a gene	SO:0001631	Upstream
ownstream_gene_variant	A sequence variant located 3' of a gene	SO:0001632	Downstream
FBS_ablation	A feature ablation whereby the deleted region includes a transcription factor binding site	SO:0001895	Tfbs ablation
FBS_amplification	A feature amplification of a region containing a transcription factor binding site	SO:0001892	Tfbs amplification
F_binding_site_variant	A sequence variant located within a transcription factor binding site	SO:0001782	Regulatory region
egulatory_region_variant	A sequence variant located within a regulatory region	SO:0001566	
egulatory_region_ablation	A feature ablation whereby the deleted region includes a regulatory region	SO:0001894	Regulatory region ablation
egulatory_region_amplification	A feature amplification of a region containing a regulatory region	SO:0001891	Regulatory region amplification
eature_elongation	A sequence variant that causes the extension of a genomic feature, with regard to the reference sequence	SO:0001907	Feature elongation
eature_truncation	A sequence variant that causes the reduction of a genomic feature, with regard to the reference sequence	SO:0001906	Feature truncation
ntergenic variant	A sequence variant located in the intergenic region, between genes	SO:0001628	Intergenic

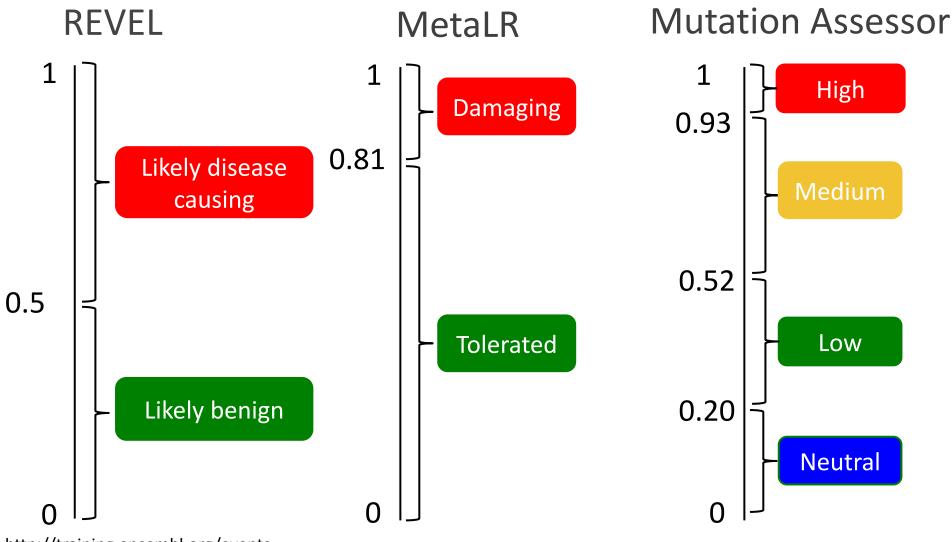
http://www.ensembl.org/info/docs/variation/predicted_data.html



Missense variants- pathogenicity

Various algorithms score or rank changes in amino acid sequence based on:


- How well conserved the protein is
- The chemical change in the amino acid position
- 3D structure and domains
- These are predictions, not facts
- A prediction will never be as good as experimental validation

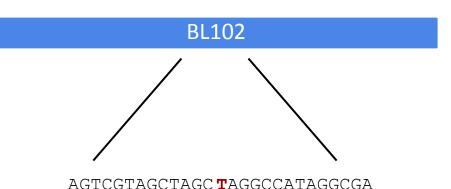

Missense variants- pathogenicity

Missense variants- pathogenicity

EMBL-EBI

Reference alleles

BL

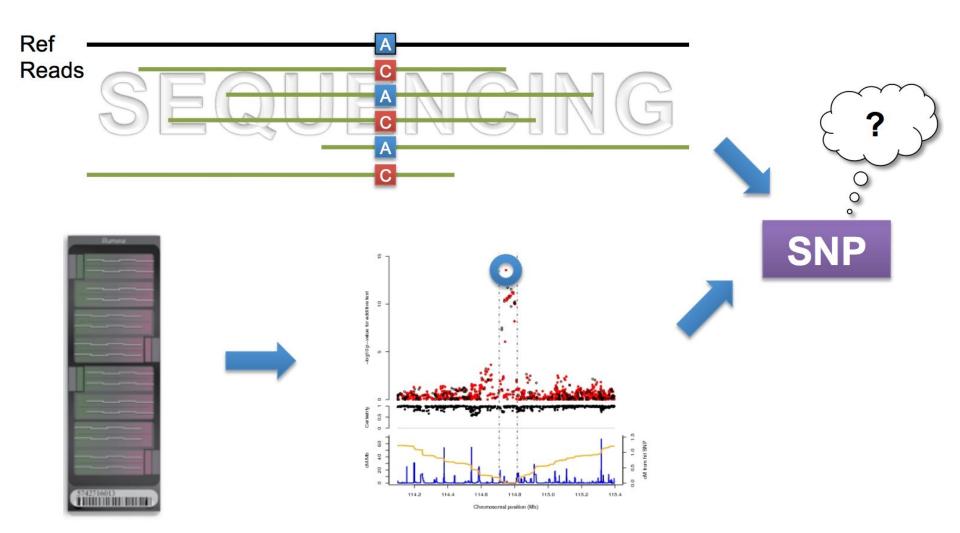


Frequency T = 0.05, frequency G = 0.95 G is the allele in all primates T causes disease susceptibility

T is allele in the contig used

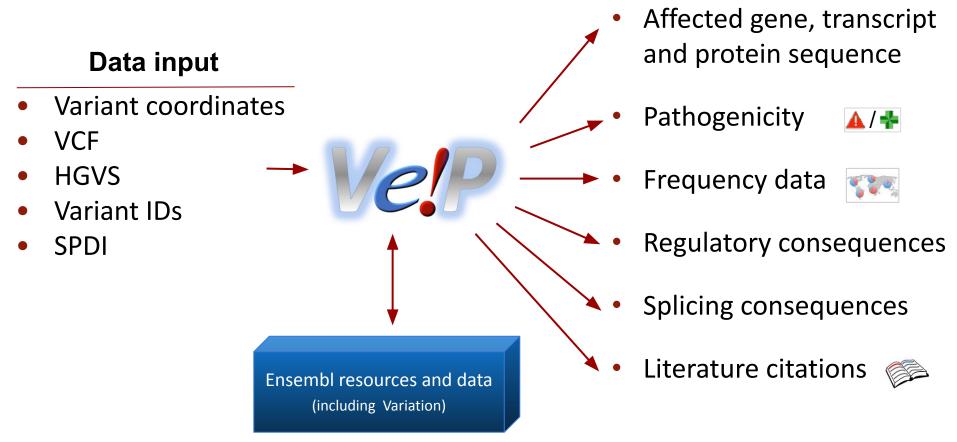
- :. T is the reference allele
- : G is the alternate allele
- : Alleles are T/G

Hands on


- We're going to look at a gene *MCM6* to find variants in the gene.
- We will look at the region of *MCM6* to find variants in the region.
- We will look at a variant rs4988235 to find more information about it.

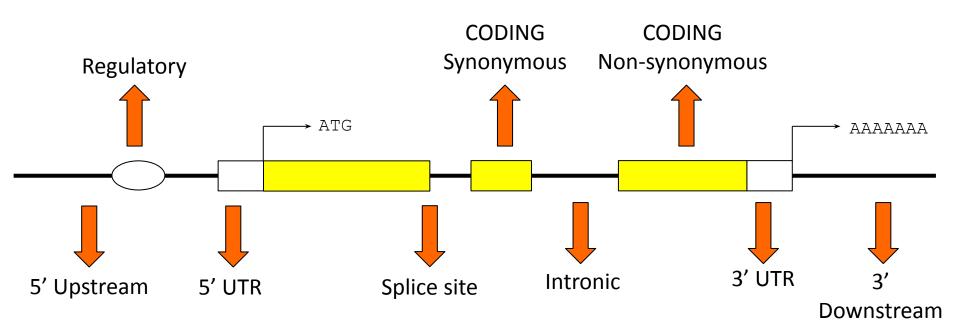
 There are more exercises than we have time for: pick and choose the ones most relevant to your work and you're welcome to finish them in your own time.

What is the VEP for?



What can I do with the VEP?

A tool to predict and annotate the **functional consequences of variants**


(SNPs, insertions, deletions, CNVs or structural variants)

EMBL-EBI

Variation consequences

SO term	SO description	SO accession	Old Ensembl term
transcript_ablation	A feature ablation whereby the deleted region includes a transcript feature	SO:0001893	Transcript ablation
splice_donor_variant	A splice variant that changes the 2 base region at the 5' end of an intron	SO:0001575	Essential splice site
splice_acceptor_variant	A splice variant that changes the 2 base region at the 3' end of an intron	SO:0001574	
stop_gained	A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a shortened transcript	SO:0001587	Stop gained
frameshift_variant	A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or deleted is not a multiple of three	SO:0001589	Frameshift coding
stop_lost	A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript	SO:0001578	Stop lost
initiator_codon_variant	A codon variant that changes at least one base of the first codon of a transcript	SO:0001582	Non synonymous coding
inframe_insertion	An inframe non synonymous variant that inserts bases into in the coding sequence	SO:0001821	
inframe_deletion	An inframe non synonymous variant that deletes bases from the coding sequence	SO:0001822	
missense_variant	A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the length is preserved	SO:0001583	
transcript_amplification	A feature amplification of a region containing a transcript	SO:0001889	Transcript amplification
splice_region_variant	A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the intron	SO:0001630	Splice site
incomplete_terminal_codon_variant	A sequence variant where at least one base of the final codon of an incompletely annotated transcript is changed	SO:0001626	Partial codon
synonymous_variant	A sequence variant where there is no resulting change to the encoded amino acid	SO:0001819	Synonymous coding
stop_retained_variant	A sequence variant where at least one base in the terminator codon is changed, but the terminator remains	SO:0001567	
coding_sequence_variant	A sequence variant that changes the coding sequence	SO:0001580	Coding unknown
mature_miRNA_variant	A transcript variant located with the sequence of the mature miRNA	SO:0001620	Within mature miRNA
5_prime_UTR_variant	A UTR variant of the 5' UTR	SO:0001623	5prime UTR
3_prime_UTR_variant	A UTR variant of the 3' UTR	SO:0001624	3prime UTR
intron_variant	A transcript variant occurring within an intron	SO:0001627	Intronic
NMD_transcript_variant	A variant in a transcript that is the target of NMD	SO:0001621	NMD transcript
non_coding_exon_variant	A sequence variant that changes non-coding exon sequence	SO:0001792	Within non coding gene
nc_transcript_variant	A transcript variant of a non coding RNA	SO:0001619	
upstream_gene_variant	A sequence variant located 5' of a gene	SO:0001631	Upstream
downstream_gene_variant	A sequence variant located 3' of a gene	SO:0001632	Downstream

http://www.ensembl.org/info/docs/variation/predicted_data.html

Use the VEP

Web interface

- · Point-and-click interface
- · Suits smaller volumes of data
- Documentation
 Launch the web interface

- · More options, more flexibility
- · For large volumes of data

Documentation

REST API

- Language-independent API
- Simple URL-based queries
- GET single variants, POST many

Documentation &

R

http://www.ensembl.org/info/docs/tools/vep/index.html

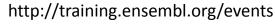
Hands on

We have identified five variants on human chromosome nine, an A deletion at 128328461, C->A at 128322349, C->G at 128323079, G->A at 128322917 and C->A at 128203516.

We will use the **Ensembl VEP** to determine:

- Whether my variants have already been annotated in Ensembl
- What genes are affected by my variants?
- Do any of my variants affect gene regulation?



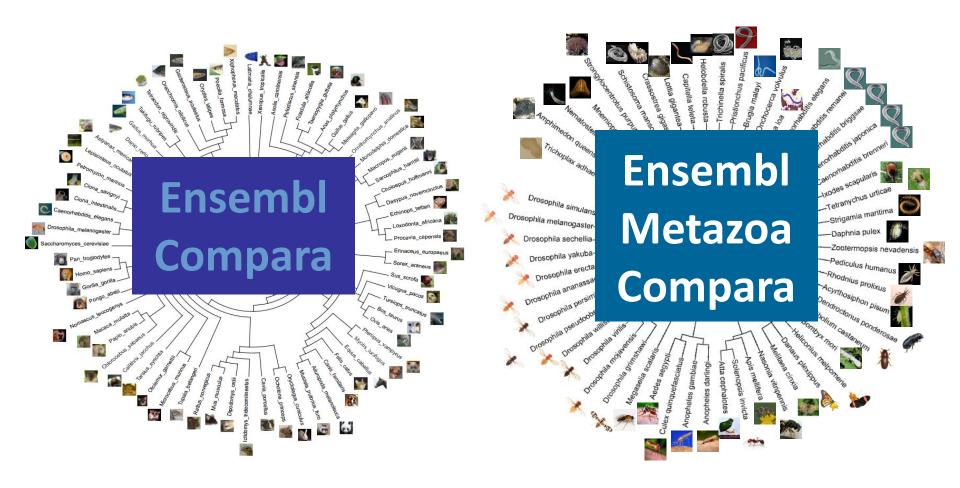

EMBL-EBI

Comparative Genomics

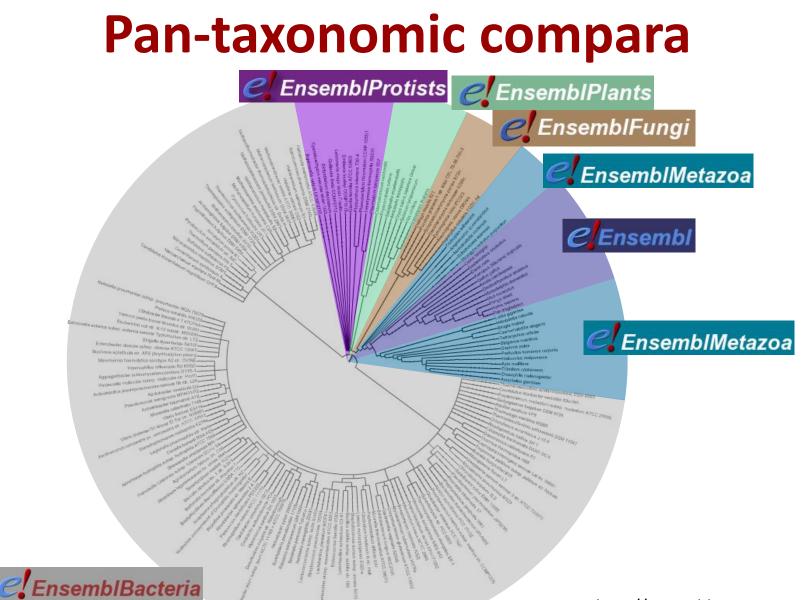
Overview of the talk

- Comparative genomics: applications and species
- Gene trees
- Homology predictions
- Whole genome alignments
 - pairwise
 - multiple
- Shared synteny

Applications of Comparative Genomics

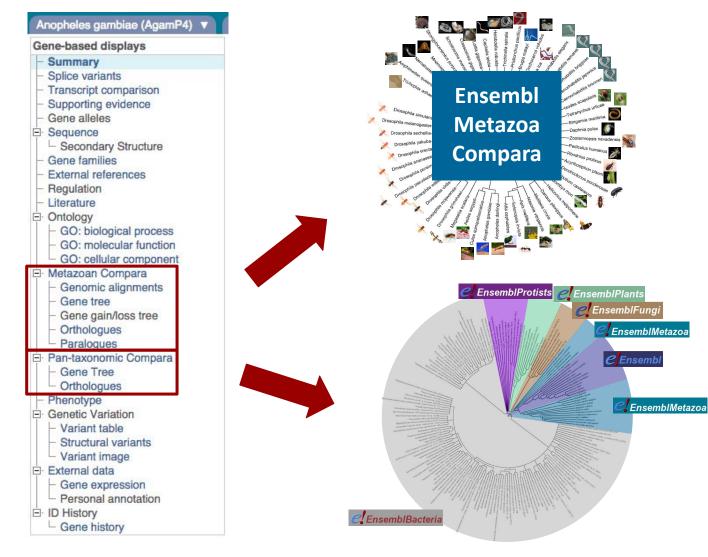

Comparative genomics allows us to understand:

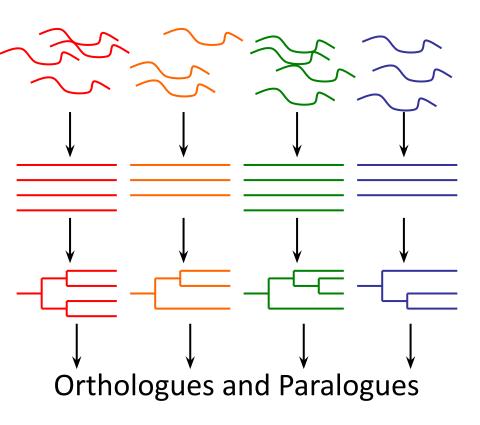
- vertebrate evolution
- differences between species at the genome level
- gene function based on homology
- the distribution of highly conserved regions



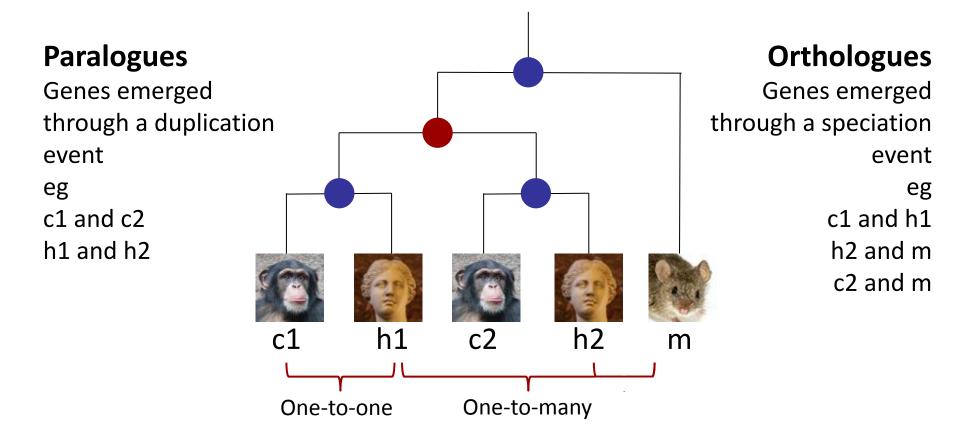
Comparative analysis by taxa




http://ensemblgenomes.org/info /genomes?pan_compara=1


Pan-taxonomic compara

Gene trees


- Based on protein alignments
- Representative protein of each Ensembl gene
- Clustering, Blast, multiple alignments
- Reconciliation with species tree
- Orthologue/Paralogue inference

http://www.ensembl.org/info/docs/compa ra/homology_method.html

Homology relationships

EMBL-EBI

Hands on

- We're going to look at a gene *BRCA2* to find homologues.

Whole genome alignments

- To identify highly conserved regions
 - sequences that evolve slowly
 - regions likely to be functional
 - both coding and non-coding sequences
- To spot trouble gene predictions
- To define syntenic regions
- Types: pairwise *versus* multiple

Pairwise alignments

Pairwise alignments with BLASTZ (older) LASTZ-net (newer)

- Human: everything
- Model organisms: related species
- Agricultural mammals: each other

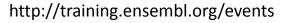
http://www.ensembl.org/info/genome/compara/analyses.html

Multiple alignments

- EPO (Enredo-Pecan-Ortheus) analysis
 - fish, sauropsids, eutherian mammals, primates

- EPO-extended analysis (allows fragmented assemblies)
 - fish, sauropsids, eutherian, primates, pig breeds (+ other agricultural mammals)
- Mercator-Pecan analysis
 - amniota vertebrates (mammals+birds)
- Cactus
 - Murinae

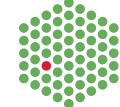
http://www.ensembl.org/info/genome/compara/multiple_genome_alignments.ht ml http://training.ensembl.org/events



Hands on

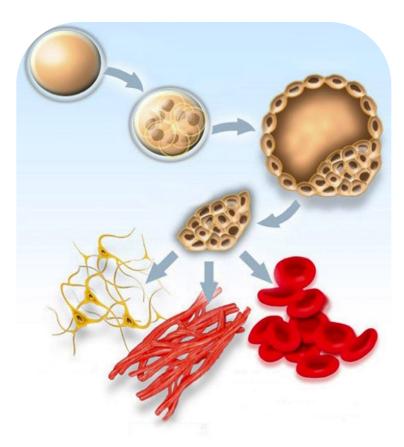
We will look at a human genomic region
 2:176087000-176202000 which contains the *HoxD* cluster to find alignments and conservation regions.

- There are more exercises than we have time for: pick and choose the ones most relevant to your work and you're welcome to finish them in your own time.



EMBL-EBI

Regulation of gene expression


Regulation

- Annotation of the genome with functional regulatory elements; promoters, enhancers, repressors
- Epigenetic marks
 - Histone modifications
 - DNA methylation
- Transcription Factor binding
- RNA Pol binding
- Predicted open/closed chromatin
 - DNase I sensitivity

One genome - many cell types

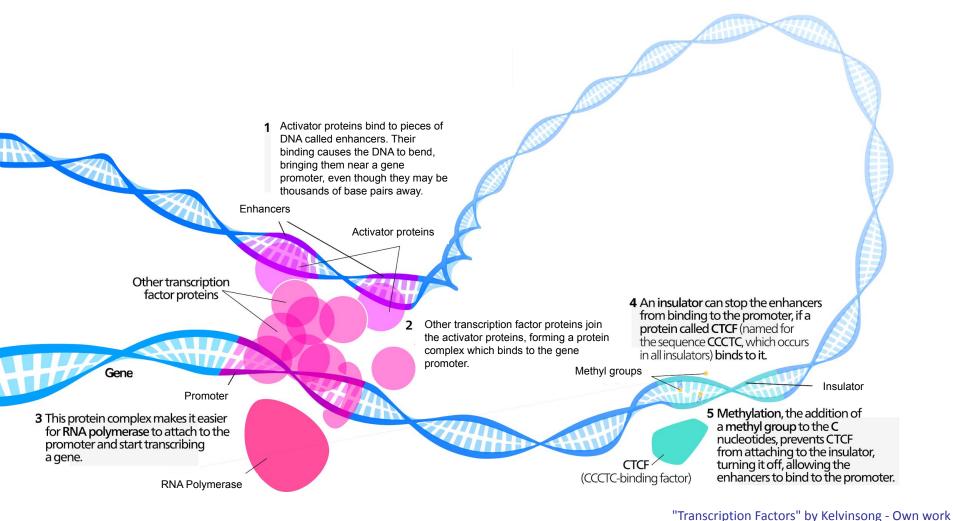
Essentially all cells of an individual share

- the same genome
- the same genes

But...

there are hundreds of **different cell types** with a clearly **distinct phenotype**

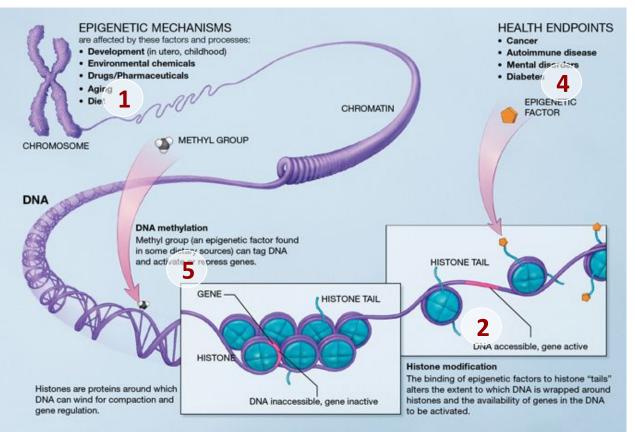
Difference?


Different gene expression profiles = different epigenomes*

*epigenome = cell type (sometimes cell line) = tissue type
http://training.ensembl.org/events

Layers of transcriptional regulation

http://training.ensembl.org/events


https://commons.wikimedia.org/wiki/File:Transcription_Factors.svg#/media/File:Transcription_Factors.svg

EMBL-EBI

Layers of transcriptional regulation

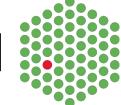
DNA quaternary structure: Histones and chromatin

- 1. DNA methylation
- 2. Open chromatin
- 3. Nucleosome positioning
- 4. Modification of histone tails
- 5. 3D conformation

Image taken from: http://commonfund.nih.gov/epigenomics/figure

Experimental data

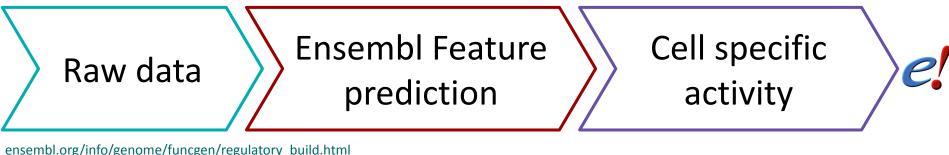
source: <u>https://www.encodeproject.org/</u>
http://training.ensembl.org/events



The Ensembl Regulatory Build

What data does Ensembl generate?

Step 1: The processed **data** is imported from the various sources.


Step 2: Data processed to predict the positions of regulatory features

(i.e. promoters, promoter flanking regions, enhancers, CTCF binding sites, transcription factor binding sites & open chromatin)

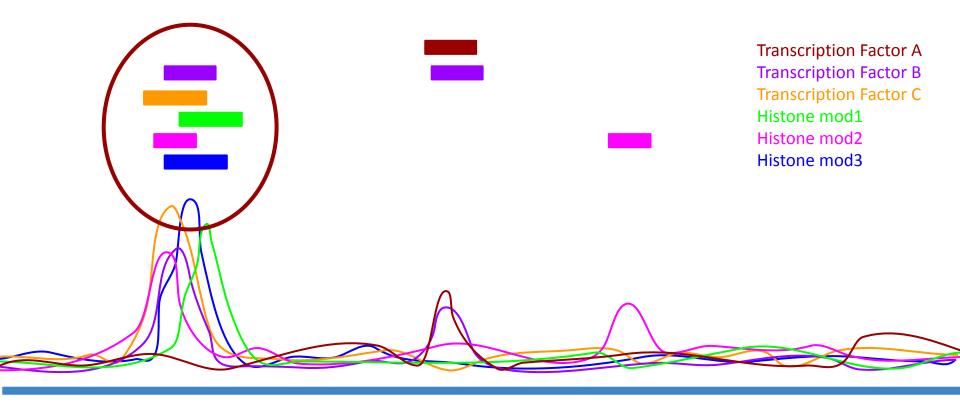
Step 3: The activity of these features is predicted in different cell types

(i.e. active, poised, repressed, inactive, unknown)

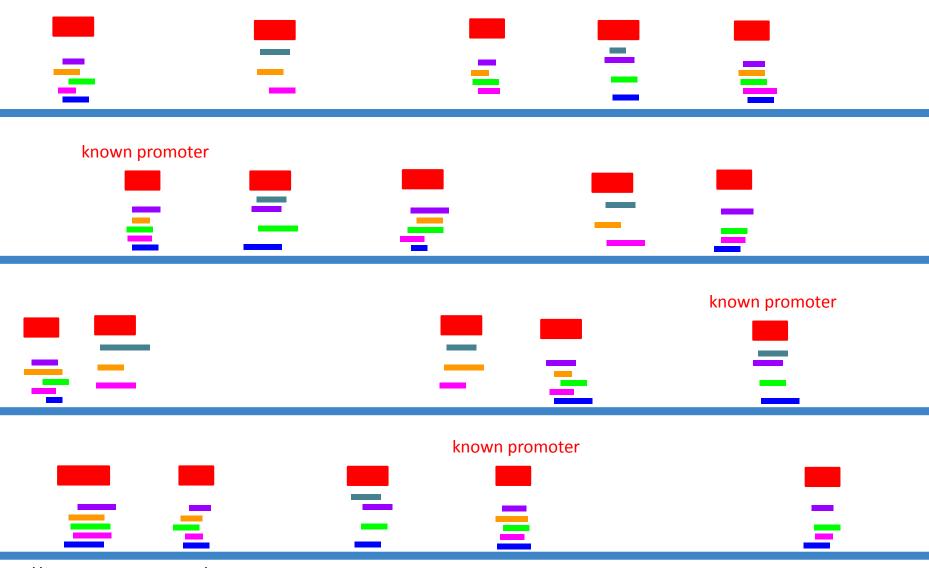
Step 4: Display in the genome browser.

ensembl.org/info/genome/funcgen/regulatory_build.htm http://training.ensembl.org/events

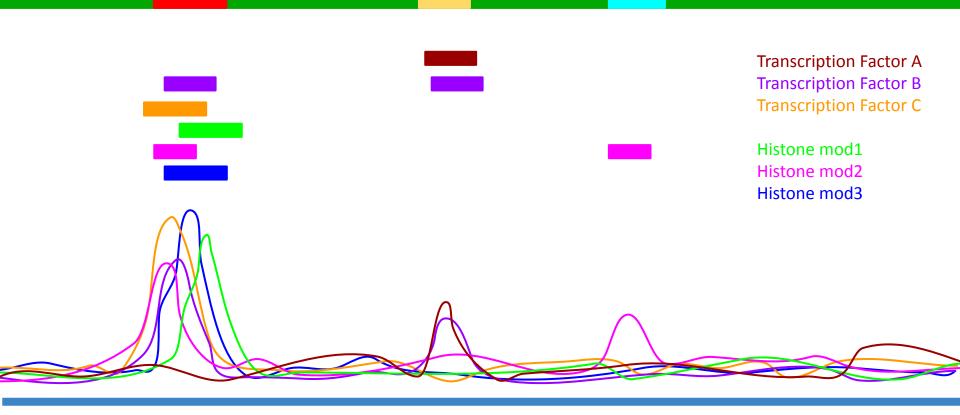
Where does the data come from?


Species	Data source	Assay types	Epigenomes
	ENCODE ROADMAP PROJECT	 ChIP-seq (histone mods) TF binding sites RNApol DNase sensitivity (open chromatin) 	48 cultured cell lines
	ENCODE	 ChIP-seq (histone mods) TF binding sites RNApol DNase sensitivity (open chromatin) 	8 cultured cell lines
	genome/funcgen/regulation_sources.h	 ChIP-seq (histone mods) DNase sensitivity (open chromatin) 	20 primary cells from haematopoietic cell lineage (direct from human cells)

nup.//training.ensempil.org/events

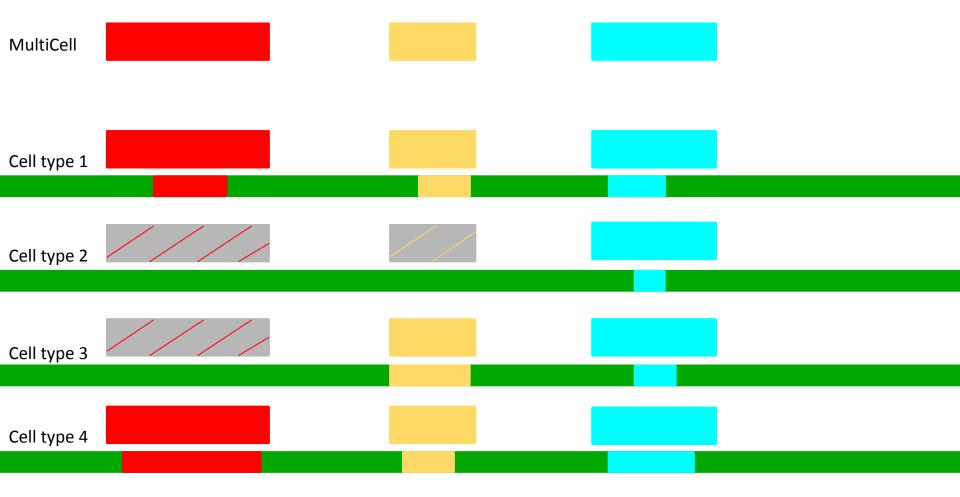

Step 1: Raw data & peak calling

Step 2: Predicting feature positions

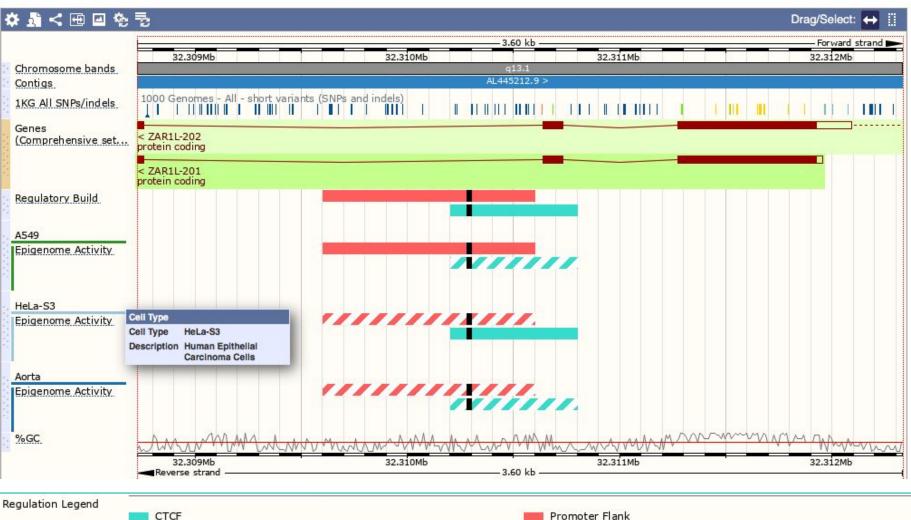


Step 2: Predicting feature positions

Segmentation


Step 3: Predicting cell type activity

Cell type 1									
Cell type 2									
Cell type 3									
Cell type 4									


Step 3: Predicting cell type activity

Step 4: View in genome browser

Motif feature

Activity in epigenome: Inactive

Link to example page http://training.ensembl.org/events

What does Ensembl <u>not</u> do?

We <u>do not</u>:

- Link regulatory features to genes
 - We allow you see the location of features.
- Link regulatory features to gene expression.
 - We have cell-line specific regulation data and tissue specific expression data.

You are required to make your own inferences about this data.

Regulatory data is incredibly complex and still in relative infancy. There is no comprehensive database of regulation data...yet!

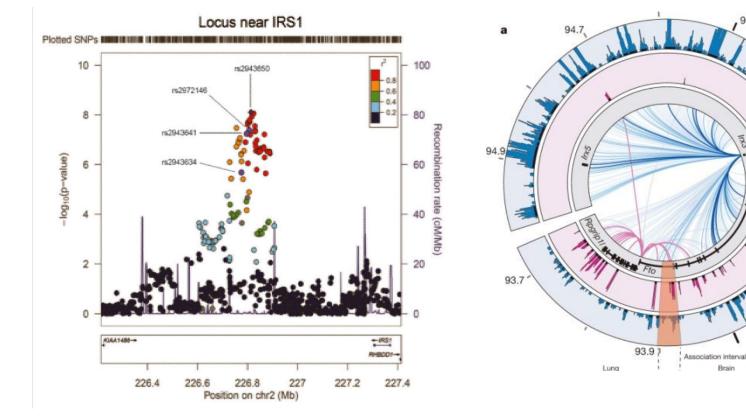
Other regulatory resources in Ensembl

- Human and mouse

- VISTA elements (enhancers)
- TarBase miRNA targets
- Human only

- GTEX eQTLs
- Methylation (WGBS/RRBS) data from ENCODE
- Microarray probe mapping to transcripts

Future directions...



Future directions...

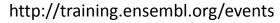
Using eQTL & Hi-C to link regulatory regions to genes

Kilpeläinen TO et al., Nat Genet. 2011 Jun 26;43(8):753-60. Smemo S et al. Nature. 2014 Mar 20;507(7492):371-5.

Fto

2-3 3-10

 $(-\log(P))$


94.3

Hands on

- We're going to look at the region of a gene *KPNA2* to find regulatory features and explore what cells types they are active in and what evidence there is to show this.

 There are more exercises than we have time for: pick and choose the ones most relevant to your work and you're welcome to finish them in your own time.

Data Mining with BioMart

Outline of this session

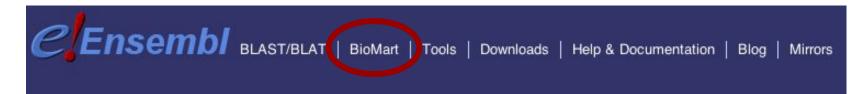
- What is BioMart?
- The principle: 4 steps
- Demo and Exercises

What is BioMart?

- A tool in your browser:
 - Export Ensembl data with no programming required
 - Build queries with a few mouse clicks
 - Generates customisable datatables and files

Why use BioMart?

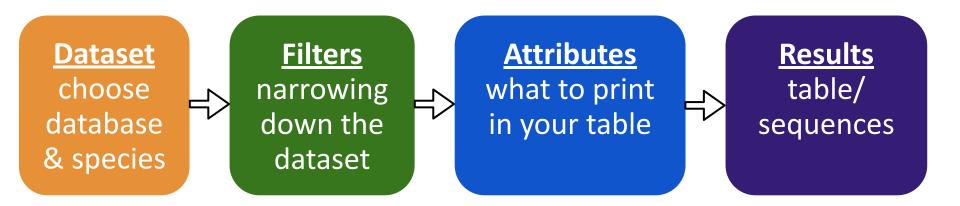
For things that would be time consuming/ difficult with the Ensembl browser


- Query multiple things (gene/ variants) at once:
 - ID conversions
 - Gene locations
 - Download sequences
- Export large amounts of data

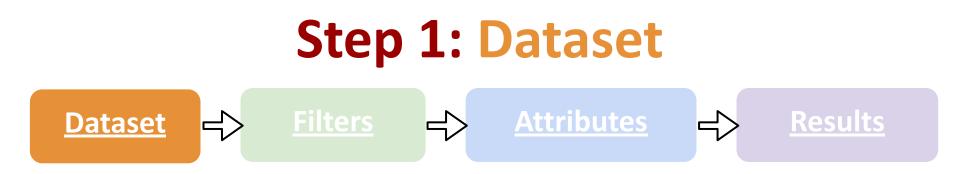
Where to find BioMart

- www.ensembl.org/biomart/martview

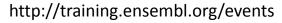
- metazoa.ensembl.org/biomart/martview


Availability

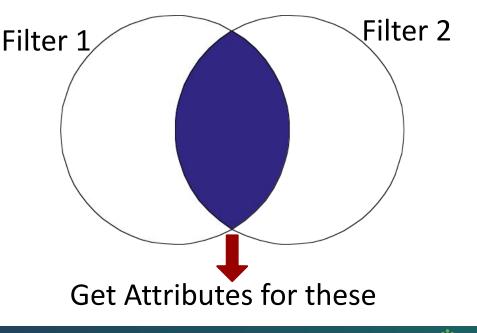
Ensembl Ensembl Plants Ensembl Fungi (some exceptions) Ensembl Metazoa Ensembl Protists (some exceptions)

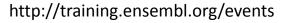


How do I use BioMart? The 4 steps



- Define the database that you want to search with your filters
 - Genes, Variation, Regulation
- Define the species





Step 2: Filters Dataset Filters Attributes Results

Define a (large) set of genes/variants by combinations of parameters, eg:

- A region
- A list of IDs
- Function (GO term)
- Phenotypes

Step 3: Attributes

Attributes

Dataset

Define the data you want for that set, e.g.

- IDs
- Features
- Sequences
- Orthologues/Paralogues

<u>Results</u>

Dataset Filters Attributes Results

View and download the datatable in a number of formats:

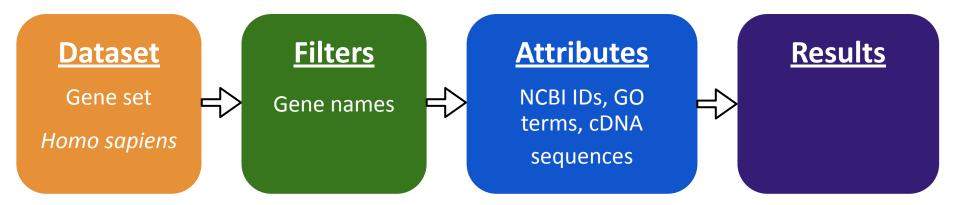
- html
- tsv
- CSV
- xls
- fasta

biomaRt

Bioconductor DPEN SOURCE SOFTWARE FOR BIOINFORMATICS	Home	Install	Help	Search: Developers	About
Home » Bioconductor 3.0 » Software Packages » b	iomaRt			Workflows »	
olomant				Common Bioconduct include:	
Interface to BioMart databases (e.g. E Gramene)	Oligonucleotide Arrays High-throughput Sequencing Counting Reads for Differential Expression (parathyroideSE vignette) Anootation				
Bioconductor version: Release (3.0)				Annotating Varian Annotating Ranges	
In recent years a wealth of biological data has becon to these valuable data resources and firm integration bioinformatics data analysis. biomaRt provides an ini molementing the BioMart software suite (http://www	n with data analysis terface to a growing	is needed for compre	ehensive ses	Flow Cytometry ar Candidate Binding Transcription Fact Cloud-enabled cis- annotation	d other assays Sites for Known

- Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data using R statistical programming language.
- Package for Biomart called BiomaRt :

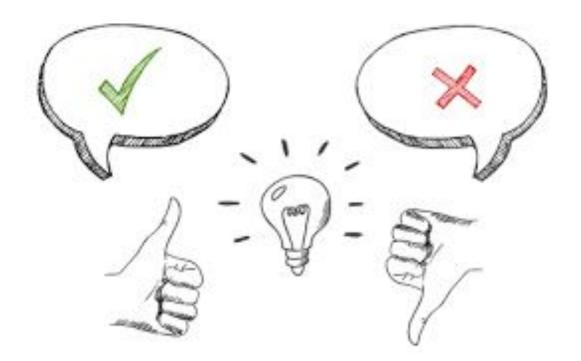
http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html


- Easy to install in R :
 - source("<u>http://bioconductor.org/biocLite.R</u>")
 - biocLite("biomaRt")
- Documentation: <u>http://www.bioconductor.org/packages/release/bioc/vignettes</u> /<u>biomaRt/inst/doc/biomaRt.pdf</u>

Hands on

- We're going to look at a set of six *Homo sapiens* genes *ESPN, MYH9, USH1C, CISD2, THRB* and *BRCA2* and find out:
 - Their NCBI IDs
 - Their function via GO terms
 - Their cDNA sequences

Hands on


- We're going to look at a set of six Homo sapiens genes
 ESPN, MYH9, USH1C, CISD2, THRB and BRCA2 and find out:
 - Their NCBI IDs
 - Their function via GO terms
 - Their cDNA sequences

 There are more exercises than we have time for: pick and choose the ones most relevant to your work and you're welcome to finish them in your own time.

Feedback

training.ensembl.org/events

Wrap-up

Ensembl is a genome browser which integrates:

- gene annotation
- variation
- regulation
- comparative genomics

How is all this data organised?

- Ensembl browser sites
 - Main website, Ensembl Genomes, GRCh37, Archive!
- BioMart 'DataMining tool'
- Ensembl Database (open source)
 - Perl-API, REST API, MySQL
- FTP download site
 - http://www.ensembl.org/info/data/ftp/index.html

Help and documentation

Course online https://www.ebi.ac.uk/training/online/course-list Tutorials www.ensembl.org/info/website/tutorials

Email us helpdesk@ensembl.org Ensembl public mailing lists dev@ensembl.org, announce@ensembl.org

Publications

http://www.ensembl.org/info/about/publications.html

Cunningham, F *et al.* **Ensembl 2022** Nucleic Acids Research (Database Issue) <u>https://doi.org/10.1093/nar/gkab1049</u>

Andrew D Yates *et al.* **Ensembl Genomes 2022: an expanding genome resource for non-vertebrates** Nucleic Acids Research (Database Issue) <u>https://doi.org/10.1093/nar/gkab1007</u>

Newman, V. *et al.* **The Ensembl Genome Browser: Strategies for Accessing Eukaryotic Genome Data** Methods in Molecular Biology (Clifton, N.J.), 01 Jan 2018, 1757:115-139 <u>https://europepmc.org/article/MED/29761458</u>

Recommend us to your friends

We can teach an Ensembl course at any institute for free (plus trainers' expenses in high income countries).

Email us: helpdesk@ensembl.org

Browser course

One day course on the Ensembl browser, aimed at wet-lab scientists.

REST API course

Half day course on the Ensembl REST API, aimed at bioinformaticians.

Train the Trainer course

One day course on delivering the Ensembl browser course.

training.ensembl.org/hosting

Follow us

Ensembl Acknowledgements

The Entire Ensembl Team

Adam Frankish, Ahamed Imran Abdul Salam, Alexandra Bignell, Ameya Chaubal, Andrea Winterbottom, Andrew Berry, Andrew Parton, Andrey Azov, Andy Yates, Anja Thormann, Anmol Jaywant Hemrom, Anne Lyle, Astrid Gall, Benjamin Moore, Bethany Flint, Brandon Walts, Bruno Contreras-Moreira, Carla Cummins, Carlos Garcia Giron, Claire Davidson, Cristina Guijarro, Dan Sheppard, Daniel Zerbino, David Thybert, Denye Ogeh, Diana Lemos, Elizabeth Lewis, Emily Perry, Fergal Martin, Fiona Cunningham, Gareth Maslen, Gareth Williams, Garth Ilsley, Guy Naamati, Helen Schullenburg, IF Barnes, Ilias Lavidas, Irina Armean, James Allen, Jamie Allen, Jane Loveland, Jonathan Mudge, Jorge Alvarez-Jarreta, Jose Carlos Marugan, Jose Manuel Gonzalez Martinez, Jyothish Bhai, Kamalkumar Jayantilal Dodiya, Kevin Howe, Kieron Taylor, Kostas Billis, Lahcen Campbell, Leanne Haggerty, Luca Da Rin Fioretto, Magali Ruffier, Manoj Sakthivel, Manuel Carbajo Martinez, Marc Chakiachvili, Marek Szuba, Marie-Marthe Suner, Matthew Hardy, Matthew Russell, Matthieu Barba, Matthieu Muffato, Michael Paulini, Michael Szpak, Mike Kay, Mikkel Christensen, Mira Sycheva, Nick Langridge, Nishadi De Silva, Osagie Izuogu, Paul Davis, Paul Flicek, Premanand Achuthan, Reham Fatima, Ridwan Amode, Ruth Bennett, Sanjay Boddu, Sarah Donaldson, Sarah Hunt, Shamika Mohanan, Stephen Trevanion, Thibaut Hourlier, Thomas Juettemann, Thomas Maurel, Tiago Grego, Toby Hunt, Tuan Le, Vasili Sitnik

Training materials

- Ensembl training materials are protected by a CC BY license
- http://creativecommons.org/licenses/by/4.0/
- If you wish to re-use these materials, please credit Ensembl for their creation
- If you use Ensembl for your work, please cite our papers
- http://www.ensembl.org/info/about/publications.html

