
Training materials

• Ensembl training materials are protected by a CC
BY license

• http://creativecommons.org/licenses/by/4.0/
• If you wish to re-use these materials, please credit

Ensembl for their creation
• If you use Ensembl for your work, please cite our

papers
• http://www.ensembl.org/info/about/publications.ht

ml

EBI is an Outstation of the European Molecular Biology Laboratory.

Ensembl REST API course

Ben Moore

Course agenda

• Ensembl and the gene model

• What is REST

• Ensembl REST server features

• Fetching a single endpoint

• Decoding the response to link together endpoints

• POST endpoints

• Rate limiting

Course materials

http://training.ensembl.org/events/

• Slides
• Notebooks in Python and R

• Use whichever notebook you feel comfortable with
• You will need to clone it with your Microsoft Account

• When we demo the example answers we will use
Python only

http://training.ensembl.org/events

Ensembl Features
• Gene builds for >200 species

• Gene trees

• Regulatory build (ENCODE)

• Variation display and VEP

• Display of user data

• BioMart (data export)

• Programmatic access via the APIs

• Completely Open Source

Vertebrate species on Ensembl

www.ensembl.org

Non-vertebrates on Ensembl genomes

FungiBacteria

Plants

Protists

Metazoa

www.ensemblgenomes.org

Ensembl and Ensembl Genomes
Ensembl EnsemblGenomes

Released 2000 2009

Species Vertebrates (fly, worm and
yeast as outgroups)

Non-vertebrates (protists,
plants, fungi, metazoa,
bacteria)

Annotation by Ensembl in collaboration with the
scientific communities

URL rest.ensembl.org rest.ensembl.org

Human genome assemblies

• GRCh38 (aka hg38)
• No gaps. Many rare/private alleles replaced.
• rest.ensembl.org
• Software regularly updated
• Data regularly updated

• GRCh37 (aka hg19)
• 250 gaps
• grch37.rest.ensembl.org
• Software regularly updated
• Data only rarely updated

Release cycle

108
Oct 2022

2-3
months

New genome
assemblies

Updated
variation data

Updated
regulation data

New/updated
REST endpoints

Updated gene
sets

Compara on new genes
and genomes

Underlying
software
updates

109
Jan 2023

REST Archives

Starting with release 87, there are REST archives (GRCh38
only). We will continue to provide archive services for up to
five years, to match the Ensembl website archives.

http://e87.rest.ensembl.org

Ensembl Data Model

Ensembl Data Model

Primary feature types of Genes, Transcript, and Exons

A Gene is a set of alternatively spliced Transcripts

A Transcript is a set of Exons

Ensembl Data Model

Translations are not Features.

A Translation object defines the UTR and CDS of a Transcript.

Peptides are not stored in the database, they are computed on the fly
using Transcript objects.

Not all transcripts have a translation
(e.g. ncRNAs)

5’ UTR CDS 3’ UTR

Translation

Features

Features have a defined location on the genome

Start and end are always plotted on the forward
strand

start < end

Gene SCNN1B Gene PALB2

forward strand reverse strand

start end start end

slice
representing
chr16

What is a REST API?

REpresentational State Transfer. It describes how one
system can communicate state with another.

Typically over HTTP(S), providing a machine readable,
language agnostic method to access remote data or
services.

http://rest.ensembl.org/dataIwant

Gene: IRAK4, start: 43758944,
end: 43789543, ...

• Language agnostic
access to Ensembl
datasets

• Only a fraction of the
functionality of the Perl
API is exposed

http://rest.ensembl.org

Ensembl REST

ᐩ HTTP access to Ensembl
data

ᐩ Stable service
ᐩ Limited by network

latency
ᐩ Read only
ᐩ Versioned with archives

- No mirrors
- Not an efficient data

mining solution
- Incomplete coverage

What Ensembl REST is and is not

What is an endpoint?

“In REST, the resource typically refers to some object or
set of objects that are exposed at an API endpoint.
/api/users/johnny. An endpoint by itself is just a
reference to a uri that accepts web requests that may or
may not be RESTful. /services/service.asmx.”

An endpoint is a particular output that you can get given
a particular input.

It is a function that interacts with our database.

Endpoint documentation

Full documentation of all the endpoints is found at:

http://rest.ensembl.org

The documentation lists:

• All the endpoints grouped by function
• The required parameters for each endpoint
• Optional parameters
• Example code for using the endpoints

• Archive
• Comparative

Genomics
• Cross References
• Information
• Lookup
• Mapping
• Ontology &

Taxonomy
• Sequence
• Variation, etc...

Functional groupings

Endpoint Documentation
You must include the id
in the URL in this
position

You can choose to
include these in the
URL in the format:
parameter=option

Sample Code

Making a REST call in the browser

• The easiest way to make REST calls is to put URLs
into the browser

• This can be used as a quick look-up
• This can help you to test the URLs in your scripts to

see:
• If they work
• If you’ve included the correct parameters
• What the output looks like

Ping confirms that you have a connection to the database

http://rest.ensembl.org/info/ping?content-type=application/json

{
 ping: 1
}

Pinging the database

Requesting a gene by ID

http://rest.ensembl.org/lookup/id/ENSG00000157764?content-type=appli
cation/json

{
 "source": "ensembl_havana",
 "object_type": "Gene",
 "logic_name": "ensembl_havana_gene",
 "version": 12,
 "species": "homo_sapiens",
 "description": "B-Raf proto-oncogene, serine/threonine kinase [Source:HGNC
Symbol;Acc:HGNC:1097]",
 "display_name": "BRAF",
 "assembly_name": "GRCh38",
 "biotype": "protein_coding",
 "end": 140924764,
 "seq_region_name": "7",
 "db_type": "core",
 "strand": -1,
 "id": "ENSG00000157764",
 "start": 140719327
}

http://rest.ensembl.org/lookup/id/ENSG00000157764?content-type=application/json
http://rest.ensembl.org/lookup/id/ENSG00000157764?content-type=application/json

HTTP Status Codes

The server uses HTTP status codes to signal the request
outcome

404

http://rest.ensembl.org/thisdoesntexist

http://rest.ensembl.org/thisdoesntexist?content-type=json

Code Name Notes

200 OK Request was a success

400 Bad
Request

Occurs during exceptional circumstances such as the service is
unable to find an ID. Check if the response Content-type or Accept
was JSON. If so the JSON object is an exception hash with the
message keyed under error

403 Forbidden You are submitting far too many requests and have been
temporarily forbidden access to the service. Wait and retry with a
maximum of 15 requests per second.

404 Not Found Indicates a badly formatted request. Check your URL

HTTP Status Codes

https://github.com/Ensembl/ensembl-rest/wiki/HTTP-Response-Codes

Code Name Notes

408 Timeout The request was not processed in time. Wait and retry later

429 Too Many
Requests

You have been rate-limited; wait and retry. The headers
X-RateLimit-Reset, X-RateLimit-Limit and X-RateLimit-Remaining will
inform you of how long you have until your limit is reset and what
that limit was. If you get this response and have not exceeded
your limit then check if you have made too many requests per
second.

503 Service
Unavailable

The service is temporarily down; retry after a pause

418 I’m a teapot An April Fools joke added in 1998, who said computer scientists
don’t have a sense of humour?

HTTP Status Codes (cont.)

https://github.com/Ensembl/ensembl-rest/wiki/HTTP-Response-Codes

Exercises 1

1. Find an endpoint which you can use to lookup
information about a gene using its symbol.

2. Create a URL to find information about the gene ESPN
in human.

3. Expand your results to include information about
transcripts.

Answers 1

1. http://rest.ensembl.org/documentation/info/symbol_lookup

2. http://rest.ensembl.org/lookup/symbol/homo_sapiens/ESPN?conten

t-type=application/json
3. http://rest.ensembl.org/lookup/symbol/homo_sapiens/ESPN?conten

t-type=application/json;expand=1

http://rest.ensembl.org/documentation/info/symbol_lookup
http://rest.ensembl.org/lookup/symbol/homo_sapiens/IRAK4?content-type=application/json
http://rest.ensembl.org/lookup/symbol/homo_sapiens/IRAK4?content-type=application/json
http://rest.ensembl.org/lookup/symbol/homo_sapiens/IRAK4?content-type=application/json;expand=1
http://rest.ensembl.org/lookup/symbol/homo_sapiens/IRAK4?content-type=application/json;expand=1

Scripting around REST API calls

Scripting around calls allows you to:

• Extract specific bits of data from your REST call.
• Output in your preferred format.
• Link together calls for more complicated queries.
• Integrate your queries into a larger pipeline.

Language agnostic access

• REST APIs are designed to be accessed using any
programming language.

• Calls can be made and decoded within any script.
• We have examples in Python, Perl and R.

Python modules

• To make requests in Python, you will need the requests
package:
• http://docs.python-requests.org/en/master/user/install/ (not

needed for this course, this is all set up in your Python
Notebook)

• To decode JSON you will need the JSON package:
• Should ship with standard Python installations

• You’ll need pprint to print JSON in an easy to read way
• Should ship with standard Python installations

import requests, sys, json

from pprint import pprint

http://docs.python-requests.org/en/master/user/install/

R libraries

• To make requests in R you will need the httr library
• To decode JSON you’ll need the jsonlite package

library(httr)

library(jsonlite)

Requesting a gene by ID

http://rest.ensembl.org/lookup/id/ENSG00000157764?content-type=appli
cation/json

{
 "source": "ensembl_havana",
 "object_type": "Gene",
 "logic_name": "ensembl_havana_gene",
 "version": 12,
 "species": "homo_sapiens",
 "description": "B-Raf proto-oncogene, serine/threonine kinase [Source:HGNC
Symbol;Acc:HGNC:1097]",
 "display_name": "BRAF",
 "assembly_name": "GRCh38",
 "biotype": "protein_coding",
 "end": 140924764,
 "seq_region_name": "7",
 "db_type": "core",
 "strand": -1,
 "id": "ENSG00000157764",
 "start": 140719327
}

http://rest.ensembl.org/lookup/id/ENSG00000157764?content-type=application/json
http://rest.ensembl.org/lookup/id/ENSG00000157764?content-type=application/json

Making a request – Python

import requests, sys

server = "http://rest.ensembl.org"

ext = "/lookup/id/ENSG00000157764?expand=1"

r = requests.get(server+ext, headers={ "Accept" : "application/json"})

pprint (r)

• Make a string of the server (you’ll use this multiple
times)

• Make another string of the extension with all the
parameters

Making a request – R

library(httr)

library(jsonlite)

server <- "http://rest.ensembl.org"

ext <- "/lookup/id/ENSG00000157764"

r <- GET(paste(server, ext, sep = ""), accept("application/json"))

r

• Make a string of the server (you’ll use this multiple
times)

• Make another string of the extension with all the
parameters

Error handling – Python

import requests, sys

server = "http://rest.ensembl.org"

ext = "/lookup/id/ENSG00000157764?expand=1"

r = requests.get(server+ext, headers={ "Accept" : "application/json"})

if not r.ok:
 r.raise_for_status()

You should never assume a response will return correctly.

Check the response code returned by the server.

Error handling – R

library(httr)

library(jsonlite)

server <- "http://rest.ensembl.org"

ext <- "/lookup/id/ENSG00000157764"

r <- GET(paste(server, ext, sep = ""), content_type("application/json"))

r

stop_for_status(r)

You should never assume a response will return correctly.

Check the response code returned by the server.

Accept

HTTP allows the serving of different representations
of a resource based on client preferences

Content-type and Accept headers are how servers
and clients negotiate what format they will
communicate with.

text/html, text/plain, application/json, image/png, etc.

Accept

https://github.com/Ensembl/ensembl-rest/wiki/Output-formats

• The returned content types can be
specified in the header as accept
(you’ll need to use content-type in
URLs)

• Endpoint documentation pages list
allowed content-types

Decoding the response – Python

• In most cases you’ll be using JSON formatted
responses

• Most languages have JSON parsers that return the
data as a structure

• In Python pretty print (pprint) will give you a human
readable format

decoded = r.json()

pprint (decoded)

Decoding the response – R

• In most cases you’ll be using JSON formatted
responses

• Most languages have JSON parsers that return the
data as a structure

• In R prettify will give you a human readable format

decoded = content(r, "text")

prettify (decoded)

Decoding JSON

http://rest.ensembl.org/lookup/id/ENSG00000157764?content-type=appli
cation/json

{
 "source": "ensembl_havana",
 "object_type": "Gene",
 "logic_name": "ensembl_havana_gene",
 "version": 12,
 "species": "homo_sapiens",
 "description": "B-Raf proto-oncogene, serine/threonine kinase [Source:HGNC
Symbol;Acc:HGNC:1097]",
 "display_name": "BRAF",
 "assembly_name": "GRCh38",
 "biotype": "protein_coding",
 "end": 140924764,
 "seq_region_name": "7",
 "db_type": "core",
 "strand": -1,
 "id": "ENSG00000157764",
 "start": 140719327
}

http://rest.ensembl.org/lookup/id/ENSG00000157764?content-type=application/json
http://rest.ensembl.org/lookup/id/ENSG00000157764?content-type=application/json

Decoding JSON

• JSON is essentially a massive
dictionary/hash/dataframe with keys and values.

• Sometimes a key may then contain another nested
dictionary or list
• Which may contain another

• And another
• And another

• Look at the json to work out what keys you need
• You can cycle through all keys in a dictionary with for

loops

Helper function

• The helper function in your python script makes your
life easier by:
• Calling the request with the specified server, extension

and content type.
• Getting the status of a failed query
• Decoding the JSON (if you’ve used JSON as your

content type)
• Returning the text (if you use any other content type)

• Add it to every script then just call it when you need to
fetch an endpoint

Python Helper function

def fetch_endpoint(server, request, content_type):
 """
 Fetch an endpoint from the server, allow overriding of default content-type
 """
 r = requests.get(server+request, headers={ "Accept" : content_type})

 if not r.ok:
 r.raise_for_status()
 sys.exit()

 if content_type == 'application/json':
 return r.json()
 else:
 return r.text

R Helper function

Fetch_endpoint <- function(server, request, content_type){
 """
 Fetch an endpoint from the server, allow overriding of default content-type
 """
 r <- GET(paste(server, request, sep = ""), accept(content_type))

 stop_for_status(r)

 if (content_type == 'application/json'){
 return (fromJSON(content(r, "text")))
 } else {
 return (content(r, "text"))

}
}

Exercises 2

1. Write a script to lookup the gene called ESPN in
human and print the results in JSON.

Using results

Since JSON is a dictionary, you can pull out a single
datapoint using the key.

{
 "source": "ensembl_havana",
 "object_type": "Gene",
 "logic_name": "ensembl_havana_gene",
 "version": 12,
 "species": "homo_sapiens",
 "description": "B-Raf proto-oncogene, serine/threonine kinase [Source:HGNC
Symbol;Acc:HGNC:1097]",
 "display_name": "BRAF",
 "assembly_name": "GRCh38",
 "biotype": "protein_coding",
 "end": 140924764,
 "seq_region_name": "7",
 "db_type": "core",
 "strand": -1,
 "id": "ENSG00000157764",
 "start": 140719327
}

Using results – Python

Since JSON is a dictionary, you can pull out a single
datapoint using the key.

server = "http://rest.ensembl.org/"

ext = "lookup/id/ENSG00000157764?"

con = "application/json"

get_gene = fetch_endpoint(server, ext, con)

symbol = get_gene['display_name']

print (symbol)

Using results – R

Since JSON is a dataframe, you can pull out a single
datapoint using the key.

server <- "http://rest.ensembl.org/"

ext <- "lookup/id/ENSG00000157764?"

con <- "application/json"

get_gene <- fetch_endpoint(server, ext, con)

symbol <- get_gene$display_name

symbol

Nested JSON lists

http://rest.ensembl.org/overlap/region/human/7:140424943-140444564?f
eature=gene;content-type=application/json

[
{ "gene_id":"ENSG00000146955"

"Feature_type":"gene",
"external_name":"RAB19",
"description":"RAB19, member RAS oncogene family [Source:HGNC

Symbol;Acc:HGNC:19982]",
"Biotype":"protein_coding",
"id":"ENSG00000146955",

},
{ "gene_id":"ENSG00000103200",

"Feature_type":"gene",
"external_name":"AC069335.1",
"Description":null,
"Biotype":"processed_pseudogene"
"id":"ENSG00000103200"

}
]

List delineated by square brackets [] – no keys
Dictionary delineated by curly brackets { } – key-value pairs

1. Write a script to lookup the gene called ESPN in
human and print the stable ID of this gene.

2. Get all variants that are associated with the phenotype
'Coffee consumption'. For each variant print
a. the p-value for the association
b. the PMID for the publication which describes the

association between that variant and ‘Coffee
consumption’

c. the risk allele and the associated gene.
3. Get the mouse homologue of the human BRCA2 and

print the ID and sequence of both.

Exercises 3

Other content types – Python

• If you specify another content type (not JSON), the
helper function will get you this as text

• This can be used to get:
• Sequence in FASTA
• Gene trees and homologues in various formats
• Alignments

 if content_type == 'application/json':
 return r.json()
 else:
 return r.text

Other content types – R

• If you specify another content type (not JSON), the
helper function will get you this as text

• This can be used to get:
• Sequence in FASTA
• Gene trees and homologues in various formats
• Alignments

 if (content_type == 'application/json'){
 return (fromJSON(content(r, "text")))
 } else {
 return (content(r, "text"))

}

Other content types

https://github.com/Ensembl/ensembl-rest/wiki/Output-formats

• Endpoint documentation pages list
allowed content-types

• The wiki lists how you specify these

Exercises 4

1. Get the gene tree predicted for the gene
ENSG00000189221 in full nh format.

2. Get the sequence of the gene ENSG00000157764 in
FASTA.

Linking endpoints together

• If you can pull a datapoint from the JSON, you can use
it as input for another endpoint.

• You’ll need to link objects and extensions together.

Exercises 5

1. Using the script from 3.1, add a call to fetch and print
the sequence for the gene ESPN in FASTA.

2. Print the stable ID of any regulatory features that
overlap the region 1000 bp upstream of the ESPN
gene. (Hints: get the gene ID first, then check the
strand of the gene to see which way is upstream.)

Features

Features have a defined location on the genome

Start and end are always plotted on the forward
strand

start < end

Gene SCNN1B Gene PALB2

forward strand reverse strand

start end start end

slice
representing
chr16

HTTP Methods - GET vs POST

GET http://rest.ensembl.org/lookup/ENSG00000157764

POST http://rest.ensembl.org/lookup/

{ "ids" : ["ENSG00000157764",

 "ENSG00000248378"]}

Using POST - Python

import requests, sys

server = "http://rest.ensembl.org"

ext = "/lookup/id"

headers={ "Content-Type" : "application/json", "Accept" : "application/json"}

r = requests.post(server+ext, headers=headers, data='{ "ids" :

["ENSG00000157764", "ENSG00000248378"] }')

error checking removed for space

decoded = r.json()

pprint (decoded)

Using POST - R

library(httr)

library(jsonlite)

server <- "http://rest.ensembl.org"

ext <- "/lookup/id"

genes <- c("ENSG00000157764", "ENSG00000248378")

body_values <- toJSON(list(ids=genes))

r <- POST(paste(server, ext, sep = ""), content_type("application/json"),

accept("application/json"), body = body_values)

prettify(content(r, "text"))

Helper function

• You can also have a helper function for POST queries
• You’ll need to create a list of your values
• If you have a Python list you can convert it to a JSON list

with:
data = json.dumps({ "ids" : my_list })

• R
data <- toJSON(list(ids=mylist))

Python Helper function

def fetch_endpoint_POST(server, request, data, content_type='application/json'):

 r = requests.post(server+request,
 headers={ "Content-Type" : content_type},
 data=data)

 if not r.ok:
 r.raise_for_status()
 sys.exit()

 if content_type == 'application/json':
 return r.json()
 else:
 return r.text

R Helper function

fetch_endpoint_POST <- function(server, request, content_type){
 """
 Fetch an endpoint from the server, allow overriding of default content-type
 """
 r <- POST(paste(server, request, sep = ""), content_type(content_type),
accept(content_type), body = data)

 stop_for_status(r)

 if (content_type == 'application/json'){
 return (fromJSON(content(r, "text")))
 } else {
 return (content(r, "text"))

}
}

Decoding POST queries

{
 "ENSG00000157764": {
 "source": "ensembl_havana",
 "object_type": "Gene",
...

 },
 "ENSG00000248378": {
 "source": "havana",
 "object_type": "Gene",
...

 }

}

POST endpoints return a dictionary of dictionaries.

Decoding POST queries

• You could use your input list as your keys, or you could
move through the dictionary with:
• Python

for key, value in post_query.items():

• Perl
foreach my $hash_reference

(@{$post_query}) {

 my %hash = %$hash_reference;

 }

• R just treats these as dataframes

Exercises 6

1. Fetch the all the transcripts of ESPN using the lookup
function. Fetch the cDNA sequences of all transcripts
using a single POST request, and print in FASTA
format.

2. Get all variants that are located on chromosome 17
between 80348215 and 80348333. Get the variant
class, evidence attributes, source and the
most_severe_consequence for all variants in that
region from the variant POST endpoint.

X-RateLimit-Limit: 55000

X-RateLimit-Reset: 892

X-RateLimit-Period: 3600

X-RateLimit-Remaining: 54999

Response headers show we are
allowed 55000 requests over an
hour (3600 seconds)
An average 15 requests per
second
1 request used and 892 sec
(~15 minutes) from reset

Rate limiting

Requests are rate limited to
prevent a single user from
monopolising the
resources.

Retry-After: 40.0
X-RateLimit-Limit: 55000
X-RateLimit-Reset: 892
X-RateLimit-Period: 3600
X-RateLimit-Remaining: 54999

Rate limiting

Requests are rate limited to
prevent a single user from
monopolising the
resources. Wait 40 seconds

before sending
another request
or...

429

Exercises 7

The Jupyter notebook contains a script that queries the
ping endpoint 25 times, printing the count, the HTTP
Status Code, and the X-RateLimit-Remaining header each
time.

1. Increase the number of loops, do you start to get 429
errors?

2. Can you add in a step to make it wait a few seconds
every iteration? Or every 100 iterations?

Feedback

training.ensembl.org/events

The REST API release notes:
https://github.com/Ensembl/ensembl-rest/wiki/C
hange-log

Email us helpdesk@ensembl.org
Ensembl public mailing lists dev@ensembl.org,
announce@ensembl.org

Help and Documentation

https://github.com/Ensembl/ensembl-rest/wiki/Change-log
https://github.com/Ensembl/ensembl-rest/wiki/Change-log

Follow us

www.facebook.com/Ens
embl.org

@Ensembl

@BENsembl

www.ensembl.info

Ensembl Acknowledgements
The Entire Ensembl Team

Co-funded by the
European Union

Adam Frankish, Ahamed Imran Abdul Salam, Alexandra Bignell, Ameya Chaubal, Andrea
Winterbottom, Andrew Berry, Andrew Parton, Andrey Azov, Andy Yates, Anja Thormann, Anmol
Jaywant Hemrom, Anne Lyle, Astrid Gall, Benjamin Moore, Bethany Flint, Brandon Walts, Bruno
Contreras-Moreira, Carla Cummins, Carlos Garcia Giron, Claire Davidson, Cristina Guijarro, Dan
Sheppard, Daniel Zerbino, David Thybert, Denye Ogeh, Diana Lemos, Elizabeth Lewis, Emily Perry,
Fergal Martin, Fiona Cunningham, Gareth Maslen, Gareth Williams, Garth Ilsley, Guy Naamati, Helen
Schuilenburg, IF Barnes, Ilias Lavidas, Irina Armean, James Allen, Jamie Allen, Jane Loveland,
Jonathan Mudge, Jorge Alvarez-Jarreta, Jose Carlos Marugan, Jose Manuel Gonzalez Martinez,
Jyothish Bhai, Kamalkumar Jayantilal Dodiya, Kevin Howe, Kieron Taylor, Kostas Billis, Lahcen
Campbell, Leanne Haggerty, Luca Da Rin Fioretto, Magali Ruffier, Manoj Sakthivel, Manuel Carbajo
Martinez, Marc Chakiachvili, Marek Szuba, Marie-Marthe Suner, Matthew Hardy, Matthew Russell,
Matthieu Barba, Matthieu Muffato, Michael Paulini, Michal Szpak, Mike Kay, Mikkel Christensen, Mira
Sycheva, Nick Langridge, Nishadi De Silva, Osagie Izuogu, Paul Davis, Paul Flicek, Premanand
Achuthan, Reham Fatima, Ridwan Amode, Ruth Bennett, Sanjay Boddu, Sarah Donaldson, Sarah
Hunt, Shamika Mohanan, Stephen Trevanion, Thibaut Hourlier, Thomas Juettemann, Thomas Maurel,
Tiago Grego, Toby Hunt, Tuan Le, Vasili Sitnik

Funding

Training materials

• Ensembl training materials are protected by a CC
BY license

• http://creativecommons.org/licenses/by/4.0/
• If you wish to re-use these materials, please credit

Ensembl for their creation
• If you use Ensembl for your work, please cite our

papers
• http://www.ensembl.org/info/about/publications.ht

ml

