Training ML/DL Models in HPC3

O PyTorch T

1]

~
‘ri.f/‘.y\\
&)
/
Ivan Chang
Institute for Precision Health , Genomics Research and Technology Hub , Research Cyberin frastructure Center

Sep 23rd 2025

Outline

HPC3 resources guide for ML/DL/Al modeling

e Comparing ML/DL/Al modeling frameworks: TensorFlow and Pytorch
o Which to use?

e Pytorch DL modeling quickstart:
o Data structure (tensor)
o Data loading and Data set
o Neural network model building
o Model training and optimization

Quick tour of HPC3’s Biojhub4 (Jupyterhub) for hands on material

e Notes on training Pytorch based genomics DL models:
o Deepbind (ported from Theano)
o CellPose-SAM
o scGPT

HPC3 resources guide for ML/DL/Al modeling

UCI HPC3 'Hardware Specifications

DC DC

CRSP - Campus Research Storage
Pool

HPC3 - Rocky 9.6 Linux Distro
* 11568 Cores/253 Hosts (compute nodes)

» 73,132 GB Aggregated memory
e 14 nodes with 4 Nvidia V100 (16GB) GPUs - Dual Copy of All Data
» 18 nodes with 4 Nvidia A30 (24GB) GPUs i . « Snapshots

: . Nine Parallel File) :
* 4 nodes with 2 Nvidia A100 (80GB) GPUs Systems Highly available
e 2 nodes with 4 Nvidia L40S (48GB) GPUs DFS3, DFS4, DFS5, .
» EDR (100Gbps) Infiniband

* 1 PB usable storage
* Available anywhere on UCI Network

* 10GbE Ethernet * O9PB usable storage
+ Minimum * ~6GB/sec
. 4GB / bandwidth/System
MIENERERITS + Single Copy/No Snapshots https://rcic.uci.edu/hpc3/specs.html

» AVX2 instruction set (Epyc/Intel CPUs)

https://rcic.uci.edu/hpc3/specs.html

High-level View of what things cost

No Cost Allocations

HPC3 Core GPU Hours Home DFS Storage CRSP Storage
Hours Area
Storage

Faculty 200K hours/year1 By Request 50GB 1TB in Pub 1T

~2K hours/year

Student 1000 hours _ 50GB 1TB in Pub

Cloud-like Costs

HPC3 Core GPU Hours Home DFS Storage CRSP Storage
Hours Area
Storage

$0 KyFAelJVIGII; Not expandable $100/TB/5 $60/TB/year
years

AWS C5n.large P3.2xlarge - $3” Standard
Equivalent S.063 $1.95 $242/TB/year

T Exact amounts dependent on # requests/available hardware
2 Comparison difficult - S3 has higher durability, CRSP has no networking fee.

Faculty $.01/core hour

HPC3 Policies for CPU and memory scheduling

Partition Default Max memory/core Default / Max runtime Cost Jobs preemption

memory/core

CPU Partitions

standard 3GB 6 GB 2 day / 14 day 1/ core-hr No

free 3GB 18 GB 1 day /3 day 0 Yes
highmem 6 GB 10 GB 2 day / 14 day 1/ core-hr No
hugemem 18 GB 18 GB 2 day / 14 day 1/ core-hr No
maxmem 1.5 TB/node 1.5 TB/node 1 day/7 day 40 / node-hr No

GPU Partitions

gpus 3 GB 9 GB 2 day / 14 day 1/ core-hr, 32/ No
GPU-hr

free-gpu 3 GB 9 GB 1 day / 3 day 0 Yes

https://rcic.uci.edu/hpc3/slurm.html#_how_accounts_are_charged

HPC3 ML/DL Software Stack

/opt/rcic/Modules/modulefiles/Al-LEARNING

pytorch/1.11.0 pytorch/2.0.1 pytorch/2.3.0 tensorflow/2.8.0 tensorflow/2.16.1 tensorRT/8.4.2.4
tensorRT/8.6.1.6
/opt/rcic/Modules/modulefiles/ COMPILERS

cudasdk/22.9

/opt/rcic/Modules/modulefiles/TOOLS

cuda/11.4.0 cuda/11.7.1 cuda/12.2.0

/opt/rcic/Modules/modulefiles/LANGUAGES
anaconda/2020.07 go/1.20.4 julia/1.8.2 MATLAB/R2023b python/3.8.0 R/4.4.2
anaconda/2021.11 go/1.22.3 julia/1.9.3 miniconda3/23.5.2 python/3.10.2
anaconda/2022.05 java/1.8.0 mamba/24.3.0 miniconda3/24.9.2 R/4.0.4
anaconda/2024.06 java/11 MATLAB/R2020a perl/5.30.0 R/4.1.2
bioconda/4.8.3 java/17 MATLAB/R2020b perl/5.34.1 R/4.2.2

go/1.17.7 julia/1.6.0 MATLAB/R2021b python/2.7.17 R/4.3.3

HPC3 Software via Containers

e HPC3 supports Singularity and
Apptainer containers natively, as

well as Docker containers through
porting

CONTAINER CONTAINER CONTAINER

g Y e i N
(GATK 2.8 GATK 4.0

Java7 Java 8 Picard

e Containers are isolated, but share
OS and bins/libraries

e Provide highly customized software
environment apart from the host
system

A NS NN e e /Jv)

Modified from https://www.docker.com/what-container

Container Benefits

PN NAATTTN AT e TN TN A \/-W

e Portability: containers can be
published and shared via
cloud-based container hubs
(httgs://hub.docker.com/, https://dockstore.org/ 4
https://www.singularity-hub.org/) or transferred
directly as image files

e Versioning: container build files
can be stored in git/github
repositories

o Reproducibility: published
‘A) containers are immutable, and
/ provides a snapshot of the
R computing environment used to run

analysis

CONTAINER CONTAINER CONTAINER

Java7 Java 8 Picard

R250

(GATK 2.8 GATK 4.0
(

\\ N NN N A

https://hub.docker.com/
https://dockstore.org/
https://www.singularity-hub.org/

Jupyter Ecosystem - Running Containers
Interactively on HPC3

rs . Singularity

\&/
< ((SJ Spatial
~—Jupyterhub Transcriptomics
ov e >
c—__ \S/)
[: (T ~

—_— \\//)
(s

HPC3 User &’/
Authentication

https://hpc3.rcic.uci.edu/biojhub4/ Containerized software

environment

https://hpc3.rcic.uci.edu/biojhub4/

Comparing ML/DL/Al Modeling Frameworks:

O PyTorch

TensorFlow

T

TensorFlow T

TensorFlow was released on November 15th, 2015 by Google as its =
open-source framework for machine learning. It supports deep-learning, NN
neural networks, and general numerical computations on CPUs, GPUs, and INT/IN R,
clusters of GPUs. Y

e Mature Ecosystem and Deployment: TensorFlow, developed by Google, 2N
boasts a more established ecosystem, extensive tools for deployment ,}‘ {
(e.g., TensorFlow Serving, TensorFlow Lite), and a vast collection of
pre-trained models on TensorFlow Hub.

e Scalability and Production: It is well-suited for large-scale,
production-level deployments and complex Al projects, with robust
features for distributed training and optimization.

e Keras Integration: TensorFlow 2.x integrates Keras, simplifying model
building with a high-level API.

HPC3/GRTHub supported DL applications based on TF:

o DeepVariant

DeepVariant is a deep learning-based variant caller that takes aligned reads (in BAM or CRAM
format), produces pileup image tensors from them, classifies each tensor using a convolutional
neural network, and finally reports the results in a standard VCF or gVCF file.

DeepCell is a deep learning library for single-cell analysis of biological images. It allows users to apply
pre-existing models to imaging data as well as to develop new deep learning models for single-cell

Deep analysis. This library specializes in models for cell segmentation (whole-cell and nuclear) in 2D and
3D images as well as cell tracking in 2D time-lapse datasets. These models are applicable to data
ranging from multiplexed images of tissues to dynamic live-cell imaging movies.

IMC-Denoise

IMC-Denoise is a content aware denoising pipeline based on diffusion model to enhance
Imaging Mass Cytometry

O PyTorch

PyTorch's was released in September 2016 by Facebook Al Research
(now Meta Al) and was made open source in 2017. Since 2022, it has
been under the stewardship of the PyTorch Foundation, which is part of
the Linux Foundation.

e Pythonic and Dynamic: PyTorch is known for its intuitive,
Python-like syntax and dynamic computation graph, making it
easier for debugging and experimentation.

e Research-Oriented: It is widely favored in academic research
due to its flexibility and ease of prototyping novel architectures.

e Growing Ecosystem: While newer than TensorFlow, its
community and ecosystem are rapidly expanding, with increasing
tools and resources available.

HPC3/GRTHub supported DL applications based on Pytorch

¥

CellPose-SAM (CellPosed4)

A generalist algorithm for cellular segmentation, designed to work across
various cell types and imaging modalities. It uses deep learning techniques,
combining U-Net convolutional neural networks to perform segmentation
tasks, and pretrained transformer backbone of a foundation model (SAM) for
“superhuman” generalization.

scGPT

scGPT is a generative Al foundation model inspired by Large
Language Models (LLMs), but trained on gene expression data from
33 million cells rather than human text to generate embeddings for

single-cell multi-omics.

Framework interest over time

Torch Tensorflow :
. N ® + Add comparison
Computer application Search term
Worldwide ~ 1118 - 8/31/25 ~ All categories ¥ Web Search ~

LEARN MORE

L O

o Note: This comparison contains both Search terms and Topics, which are measured differently.

Interest over time @

Why Pytorch?

e Strong GPU/TPU support, stable, less dependency issues

e Autograd- automatic differentiation

e Many algorithms and components are already implemented, such as
torch.nn. Transformer

e Pytorch tensor similar to NumPy

Why PyTorch?

Computation Graph

B g
0 «Mﬁg

P

/

A g

Numpy

import numpy as np
np.random.seed(0)

N, D=3, 4
x = np.random.randn(N, D)

y = np.random.randn(N, D)
2 = np.random.randn(N, D)

a=x*y
b=a+z2

¢ = np.sum(b)

grad ¢ = 1.0

grad b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()

grad_z = grad_b.copy()

grad x = grad_a * y

grad y = grad_a * x

Tensorflow PyTorch

import numpy as np import torch

np.random.seed(0)

foport tensorflow as tf N, D=3, 4

N, D=3, 4 x = torch.rand((N, D),reguires_grad=True)

y = torch.rand((N, D),requires_gradsTrue)
with tf.device(/gpu:l'): £ = torch.rasd((N, D),requires_grad=True)

x = tf.placeholder(tf.floatl2)

y = tf.placeholder(tf.float32) a=x*y

z = tf.placeholder(tf.floatd2) b=aesz
c=torch.sun(b)

a=x*y

b=a+z2 C.backward()

¢ = tf.reduce_sum(b)
grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])

with tf.S5ession() as sess:
values = {
x: np.random.randn(N, D),
y: np.random.randn(N, D),
z: np.random.randn(N, D),
}
out = sess.run(|c, grad x, grad y, grad_z|,
feed_dict=values)
¢ val. arad x val. arad v val. arad z val = out

O PyTorch

DL modeling quickstart

Pytorch Data structure (Tensors)

Tensors are similar to NumPy’s ndarrays, with the addition being that Tensors can
also be used on a GPU to accelerate computing.

Common operations for creation and manipulation of these Tensors are similar to
those for ndarrays in NumPy. (rand, ones, zeros, indexing, slicing, reshape,
transpose, cross product, matrix product, element wise multiplication)

Tensors

Attributes of a tensor 't":
® t= torch.randn(1l)
requires grad- making a trainable parameter

e By default False

e Turnon:
0 t.requires grad ()Or
o t = torch.randn(1, requires grad=True)
e Accessing tensor value:
o tdata
e Accessingtensor gradient
o tgrad

grad_£n- history of operations for autograd

e tgrad fn

1 import torch
N, D=3, &

X

NN
nanw

) a
19 b
11 | €
12

=x*y
=a=+2Z
=torch.sum(b)

¢.backward()
print(c.grad_fn)

1

1

15

16 print(x.data)
17 print(x.grad)

torch.rand((N, D),requires_grad=True)
torch.rand((N, D),requires_grad=True)
torch.rand((N, D),requires_grad=True)

<SumBackward® object at ex7fdecbo7ecce>

tensor([[0.4118, 0.2576,
[@.7797, @.1519,
[@.8572, 0.1165,

tensor([[0.6855, ©.9696,
[0.3840, 9.0825,
[e.8104, ©.8741,

0.3470,
8.7513,
0.8596,
9.4295,
0.7400,
8.9729,

0.0240],
0.7269],
0.2636]])
0.4961],
0.0036],
0.3821]])

Attributes of a Tensor

Tensor attributes describe their shape, datatype, and the device on which they are stored.

™,

tensor = torch.rand(3,4)

print(f"Shape of tensor: ftensor.shapei")
print(f"Datatype of tensor: {tensor.dtypet”)
print(f"Device tensor is stored on: {tensor.devicei")

Out:

Shape of tensor: torch.Size([3, 4])
Datatype of tensor: torch.float32
Device tensor is stored on: cpu

Operations on Tensors

By default, tensors are created on the CPU. We need to explicitly move tensors to the GPU using .to method (after checking for
GPU availability). Keep in mind that copying large tensors across devices can be expensive in terms of time and memory!

We move our tensor to the GPU if available
if torch.cuda.is_available():
tensor = tensor.to('cuda')

Autograd

Create tensors.
x = torch.tensor(1l., requires_grad=True)
e Automatic Differentiation Package L0 e (L., W e s ROAISTING)
b = torch.tensor(3., requires_grad=True)
e Don’t need to worry about partial differentiation,
chain rule etc. # Build a computational graph.
o backward () does that y=w*x+b #y=2%x+3

e Gradients are accumulated for each step by default: .
o Need to zero out gradients after each update
o] tensor.grad_zero()

Compute gradients.

y.backward()

Print out the gradients.
print(x.grad) # x.grad

I

print(w.grad) # w.grad

2
1
print(b.grad) # b.grad = 1

Loading a Dataset

import ftorch
from torch.utils.data import Dataset

from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda
import matplotlib.pyplot as plt

training_data = datasets.FashionMNIST(
root="data",
train=True,
download=Txue,
transform=ToTensor()

test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensoxr()

Creating a Custom Dataset for your files

import os
import pandas as pd
from torchvision.io import read_image

class CustomImageDataset(Dataset):
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img _dir = img_dir
self.transform = transform
self.target_transform = target_transform

def __len__(self):
return len(self.img_labels)

def __getitem__(self, idx):
img_path = os.path.join(self.img dir, self.img_labels.iloc[idx, ©])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
sample = {"image": image, “label": label}
return sample

Preparing your data for training with
DatalLoaders

The Dataset retrieves our dataset’s features and labels one sample at a time. While training a model, we typically want to pass
samples in “minibatches”, reshuffle the data at every epoch to reduce model overfitting, and use Python’s multiprocessing to
speed up data retrieval.

Dataloader is an iterable that abstracts this complexity for us in an easy API.

from torch.utils.data import Dataloader

train_dataloader = Dataloader(training_data, batch_size=64, shuffle=True)
test_dataloader = Dataloader(test_data, batch_size=64, shuffle=True)

lterate through the Dataloader

We have loaded that dataset into the Dataloader and can iterate through the dataset as needed. Each iteration below returns a
batch of train_features and train_labels ' (containing ' 'batch_size=64 features and labels respectively). Because we
specified shuffle=True, after we iterate over all batches the data is shuffled (for finer-grained control over the data loading order,
take a look at Samplers).

Display image and label.

train_features, train_labels = next(iter(train_dataloader))
print (f"Feature batch shape: {train_features.size()}")
print(f“Labels batch shape: {train_labels.size()}")

img = train_features[0].squeeze()

label = train_labels[0]

plt.imshow(img, cmap="gray")

plt.show()

print(f“Label: {label}")

Building DL model by designing neural network layers

torch.nn.Module

impoxt os

import torch

from torch impoxt nn

from torch.utils.data import Dataloader

from torchvision import datasets, transforms

Get Device for Training

We want to be able to train our model on a hardware accelerator like the GPU, if it is available. Let’s check to see if torch.cuda is
available, else we continue to use the CPU.

device = 'cuda' if torch.cuda.is_available() else
print('Using {} device'.format(device))

cpu

Out:

Using cuda device

Define the Class

We define our neural network by subclassing nn.Module, and initialize the neural network layers in __init__. Every nn.Module
subclass implements the operations on input data in the forward method.

class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28«28, 512),
nn.RelLU(),
nn.Linear(512, 512),
nn.RelLU(),
nn.Linear(512, 10),
nn.ReLU()

def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits

Define the Class

We create an instance of NeuralNetwork,and move it to the device, and print it’s structure.

model = NeuralNetwork().to(device)
print(model)

Out:

NeuralNetwork(
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear_relu_stack): Sequential(

(Q):
(1):
(2):
(3):
(4):
(5):

Linear(in_features=784, out_features=512, bias=True)
RelLU()

Lineaxr(in_features=512, out_features=512, bias=True)
ReLU()

Linear(in_features=512, out_features=10, bias=True)
RelU()

@)

Define the Class

To use the model, we pass it the input data. This executes the model’s forward, along with some background operations. Do not
call model.forward() directly!

Calling the model on the input returns a 10-dimensional tensor with raw predicted values for each class. We get the prediction
probabilities by passing it through an instance of the nn.Softmax module.

X = torch.rand(1, 28, 28, device=device)
logits = model(X)

pred_probab = nn.Softmax(dim=1) (logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_predi")

Out:

Predicted class: tensor([2], device='cuda:0')

Loss Function

Common loss functions include nn.MSELoss (Mean Square Error) for regression tasks, and nn.NLLLoss (Negative Log Likelihood)
for classification. nn.CrossEntropylLoss combines nn.LogSoftmax and nn.NLLLoss.

We pass our model’s output logits to nn.CrossEntropyloss, which will normalize the logits and compute the prediction error.

Initialize the loss function
loss_fn = nn.CrossEntropylLoss()

Optimizer

We initialize the optimizer by registering the model’s parameters that need to be trained, and passing in the learning rate
hyperparameter.

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

Inside the training loop, optimization happens in three steps:

e Call optimizer.zero_grad() to reset the gradients of model parameters. Gradients by default add up; to prevent double-
counting, we explicitly zero them at each iteration.

» Backpropagate the prediction loss with a call to 1oss.backwards () . PyTorch deposits the gradients of the loss w.r.t. each
parameter.

* Once we have our gradients, we call optimizer.step() to adjust the parameters by the gradients collected in the backward

pass.

Full Implementation - Train Loop

def train_loop(dataloader, model, loss_£fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
Compute prediction and loss
pred = model (X)
loss = loss_£fn(pred, y)

Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()

if batch ¥ 100 == 0:
loss, current = loss.item(), batch » len(X)
print(£f"loss: {loss:>7f} [fcurrent:>5d}/{size:>5d}]1")

Full Implementation - Test Loop

def test_loop(dataloader, model, loss_£n):
size = len(dataloader.dataset)
test_loss, correct = 0, ©

with torch.no_grad():
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(l) == y).type(torch.float).sum().item()

test_loss /= size
correct /= size
print(f"Test Exrror: \n Accuracy: {(100%correct):>0.1f1%, Avg loss: {test_loss:>8f} \n")

Full Implementation

loss_fn = nn.CrossEntropylLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10

for t in range(epochs):
print(f"Epoch {t#1i\n-------ccccccccccccccccccncnea- =
train_loop(train_dataloader, model, loss_fn, optimizer)
test_loop(test_dataloader, model, loss_1£n)

print("Done!")

Full Implementation

Out:

Saving and Loading Model Weights

PyTorch models store the learned parameters in an internal state dictionary, called state_dict. These can be persisted via the
torch.save method:

model = models.vgglé (pretrained=True)
toxch.save(model.state_dict(), 'model_weights.pth')

To load model weights, you need to create an instance of the same model first, and then load the parameters using
load_state_dict() method.

model = models.vgglé() # we do not specify pretrained=True, i.e. do not load default weights
model.load_state_dict(torch.load('model_weights.pth'))
model.eval()

Saving and Loading Models with Shapes

When loading model weights, we needed to instantiate the model class first, because the class defines the structure of a network.
We might want to save the structure of this class together with the model, in which case we can pass model (and not
model.state_dict()) to the saving function:

torch.save(model, 'model.pth')

We can then load the model like this:

model = torch.load('model.pth')

Quick tour of HPC3’s Biojhub4 (Jupyterhub)

UCI e

Using your favorite browser go to: https://hpc3.rcic.uci.edu/biojhub4/hub/login You will see the following screen
where you will Use your usual HPC3 credentials to sign in:

Username:

| tv

Password:

https://hpc3.rcic.uci.edu/biojhub4/hub/login

After authentication you will see a screen with server options as in the figure below:

Server Options

Select Partition/Reservation to Use

For this workshop, modify the Select Account to Charge

free-gpu v
Select Account to Charge to be one of your Slurm accounts, change number of
iychang v

CPUs to 6 and the memory per CPU core to 6, select

Specify number of CPU cores (max 32)

§ the “CellPose-Sam (Spatial Genomics) + Base 2025Q3
memory per CPU core (max 6Gb per core for standard, 10Gb for maxmem)
4 (Pytorch)" container. Also change Partition to gpu (require
Speci til HH:MM:SS f 19hi , 6hr default " . .
coain i s b gpu account) or free-gpu partition in order to run this
06:00:00
Select a Containerized Notebook Image notebook with gpu acceleration. If gpu partition is not
CellPose-Sam (Spatial Genomics) + Base 2025Q3 (Pytorch) v

available, please use standard or free partition for cpu

Resume last session if available
operation instead (10x slower).” Press Start when done

Enable full HPC3 software stack (overide container stack)

L]
=]

with selecting options.

O ® O

Main Jupyter Interface

File Edit View Run Kemel Tabs Seftings Help

[F Q
@/ ... /dfs3a/workshop /

Name - Last Modified
@ celiranger 11 hours ago
M parsebio 3 hours ago
8 seuratdshinycode 9 hours ago
[W Seurat4_GRTHworkshop_Jan23.ipynb 10 hours ago
[Single_Cell_Workshop.ipynb 3 hours ago

@ Launcher

biojhub3_dir/dfs3a/workshop

E) Notebook

Python 3
(ipykernel)

Console

Python 3
(ipykenel)

Other

Terminal

B

Bash

o

Bash

Text File

R @

R Rstudio [7]

M

Markdown File Python File

Shiny
v

Shiny [7]

R File

=]

Show Contextual
Help

Once the notebook is done spawning, you
will get a file browser on the left, and a
Launcher screen with a number GUI apps

you can use on the right.

Fictitious home directory and short cuts

_, File Edit View Run Kernel Tabs Settings Help

B [+] 3 e 2 Launcher an

| 3
Defa Ult J u pyte r FTeTT— home/jovyan
container user . Last Modified
: Notebook
o commondata seconds ago olebeo

i crsp
B8 jupyter
i pub
M8 ucightf

seconds ago

seconds ago ﬁ Sh)
Sy 9/Q
seconds ago @ R @ (J *

seconds ago Python 3 Bash R RStudio [7] Shiny [7] Xpra Desktop
(ipykernel) 71

H Console

Python 3 Bash R
(ipykernel)

B other
M @||R | B3

Terminal Text File Markdown File Python File R File

Shortcuts to oft used
paths »

@
x

Show Contextual
Help

https://hpc3.rcic.uci.edu/biojhub4/

/dfs8/commondata/workshop/DeeplLearning

Hands-on session

® Log into biojhub4 via your HPC3 credentials
https://hpc3.rcic.uci.edu/biojhub4/
o make sure to include the trailing /
e Find the workshop folder under commondata
® Open the Deeplearning folder under workshop
® Save a copy of the notebooks to your home
directory
e Follow the instructions in Jupyter notebook

https://hpc3.rcic.uci.edu/biojhub4/

Notes on training Pytorch based genomics
DL models

Deepbind

e Implemented in
2015 before Pytorch
or TensorFlow

e Ported to Pytorch
just combining main
Pytorch functions.

e Not optimized for
real analysis, but
great example for
understanding how
to customize your
own model in
Pytorch

a Current batch
of inputs

Motif scans

irm—
e
[CTARGCACCGTCT])—0
TAGCACCTCTATTGCACCC
[CTCGGGGCCCTGCAT]]
[TACAAATGAGCACAA))

Weights

Motif
detectors
Current model
parameters
Parameter
updates
b 1. Calibrate
o
Evaluate
2
random < (_)
calibrations
0(30)
¢ 3-fold cross validation Average
validation :
(Train_____|vaida®. AUC

|

Use best
calibration
(3 attempts)

Use all training data

0
0@
0@

Train

data

Training

Training '
AUC |

}— 0.97

] : Backprop

3. Test final model

Test
AUC

Use parameters
of best candidate

..

Test data never seen

- during calibration or training

CellPose-SAM

On the HPC3, please use the "CellPose-Sam (Spatial Genomics) + Base 2025Q3 (Pytorch)" container with
gpu (require gpu account) or free-gpu partition in order to run this notebook with gpu acceleration. If gpu
partition is not available, please use standard or free partition for cpu operation instead (10x slower).

e Based on Pytorch, but highly structured wrappers and GUI allow users to apply model predictions,
model training, and model optimization without directly interfacing with Pytorch.

e Use the XPRA Desktop to run CellPose GUI
Open run_Cellpose SAM notebook to see how to run CellPose-SAM in python
Open train_Cellpose SAM notebook to see how to train CellPose-SAM with your data.

scGPT-zero shot tutorial

On the HPC3, please use the "scGPT[GPU] (Genomics Foundation Model) + Base 2025Q3 (Pytorch)" container
with gpu (require gpu account) or free-gpu partition in order to run this notebook. If gpu partition is not available,
please use the regular "scGPT (Genomics Foundation Model) + Base 2025Q3 (Pytorch)" container with
standard partition for cpu operation instead (10x slower).

e This tutorial covers the zero-shot integration with continual pre-trained scGPT. This particular workflow works for
scRNA-seq datasets without fine-tuning (or any extensive training) of scGPT.

e Continual pre-trained scGPT (scGPT_CP) is a model that inherits the pre-trained scGPT whole-human model
checkpoint, and is further supervised by extra cell type labels (using the [Tabula
Sapiens](https://tabula-sapiens-portal.ds.czbiohub.org/) dataset) during the continual pre-training stage. We
observed that the scGPT_CP model can achieve comparable or better zero-shot performance on cell
embedding related tasks compared to the original checkpoint, especially on datasets with observable technical
batch effects.

Be sure to stop your Juputerhub notebook server after you are done. From the File menu choose Hub Control Panel and

you will be forwarded to a screen similar where you can press on stop My Server to shut down the server:

U C I Research Cyberinfrastructure Center Home T0ken Admln an E‘ LOgOUt

Named Servers

In addition to your default server, you may have additional 3 server(s) with names. This allows you to have more
than one server running at the same time.

Server name URL Last activity Actions

Add New Server

