

CCAGGCGAGTTTCCCCAAAGG GGCATTATTGGCCAATCGAAT GATCCAGCCTTCAAACGGGT TGCCACTGGAGGCCCAATACC

UCI GENOMICS HIGH THROUGHPUT FACILITY

Statistical Analysis of Differential Expression

Jenny Wu

Director of Bioinformatics Genomics Research and Technology Hub Chao Family Comprehensive Cancer Center

RNA-Seq Pipeline for **Gene Level** DE

Task

What does differential expression (DE) mean?

 A gene is declared differentially expressed if an observed difference or change in read counts between two experimental conditions is statistically significant, i.e. whether or not the difference is greater than what would be expected just due to random variation.

Differential Expression

Statistical Framework:

	Sample 1	Sample 2	•••	Sample N
Feature 1	<i>K</i> ₁₁	<i>K</i> ₁₂		<i>K</i> _{1<i>N</i>}
Feature 2	<i>K</i> ₂₁	K ₂₂		<i>K</i> _{2<i>N</i>}
Feature p	K_{p1}	K_{p2}	•••	K_{pN}

- Goal: test for differential expression across different sample groups.
- *K_{ij}* is discrete positive, skewed, large dynamic range.
- $p \gg N$ small number of replicates.
- Using generalized linear model (GLMs) to detect differential expression:

 $log2(q_{ij}) = \beta_0 + \beta_1 x_{1i}$, where $x_{1i} = 0$ (*control*) or 1 (*diseased*)

• For EACH expressed gene (feature), do hypothesis testing: H_0 : $\beta_1 = 0$

Classic Framework for Differential Analysis: Regression

Condition: x = 0 (*control*) or 1 (*diseased*)

Gene Expression: $y = log 2(q_i) = b_0 + b_1 x$

Experimental Design

Statistical analysis of data with complex design can be done using R based tools such as DESeq2 and limma

Classic Framework for Differential Analysis: Generative Approach: Regression

GLMs in RNA-seq: DESeq2 Implementation

$$K_{ij} \sim \text{NB}(\mu_{ij}, \alpha_i)$$
$$\mu_{ij} = s_j q_{ij}$$
$$\log_2(q_{ij}) = x_{j*} \vec{\beta}_i$$

- K_{ij} counts of reads for gene i, sample j
- fitted mean μ_{ij}
- gene-specific dispersion α_i
- sample-specific size factor s_{j}
- parameter proportional to the expected true concentration of fragments q_{ij}
- the *j*-th row of the design matrix X x_{j*} $\vec{\beta}_i$
 - the log fold changes for gene i for each column of X

Design Matrix X

intercept

slope

Hypothesis Testing in RNA-Seq

Null hypothesis (H_0)

 The experimental condition r has no influence on the expression of the gene under consideration:

$$\mu_{
ho_1}$$
= $\mu_{
ho_2}$

Alternative hypothesis (H_0)

$$\mu_{\rho_1} \neq \mu_{\rho_2}$$

Hypothosis Testing with GLM

- $H_0: \beta_1 = 0$
- Likelihood Ratio Test

$$D = -2 * \log\left(\frac{L_0}{L_{alt}}\right)$$

Under H_0 , $D \sim \chi^2$ and p value can be calculated using χ^2 distribution.

Error Types in Hypothesis Testing

Reality Truth (H_1) Truth (H_0) Total Test result **True Positive** False Positive R (Type I error α) reject H_0 Decision Test **False Negative** True Negative m-R result (Type II error β) do not reject H_0 Total m_0 m_1 m

Differential Analysis: Two Group

```
> library(DESeq2)
> sampleFiles <- c("C1_R1.counts.txt", "C1_R2.counts.txt", "C1_R3.counts.txt",</p>
"C2_R1.counts.txt", "C2_R2.counts.txt", "C2_R3.counts.txt")
> sampleCondition <- factor(substr(sampleFiles, 1, 2))</pre>
> sampleTable <- data.frame(sampleName=sampleFiles, fileName=sampleFiles,</p>
condition=sampleCondition)
> sampleTable
                            fileName condition
        sampleName
1 C1_R1.counts.txt C1_R1.counts.txt
                                             C1
2 C1_R2.counts.txt C1_R2.counts.txt
                                             C1
3 C1_R3.counts.txt C1_R3.counts.txt
                                             c1
4 C2_R1.counts.txt C2_R1.counts.txt
                                             C2
                                             C2
5 C2_R2.counts.txt C2_R2.counts.txt
6 C2_R3.counts.txt C2_R3.counts.txt
                                             C2
dds <- DESeqDataSetFromHTSeqCount(sampleTable=sampleTable, directory=".",</pre>
design=~condition)
dds <- DESeq(dds)
results <- results(dds)</pre>
results <- results[order(results$FDR), ]</pre>
```

http://www.bioconductor.org/packages/2.12/bioc/html/DESeq2.html

Output from DESeq2

2 Includively								
log2 fo								
Wald tes								
DataFram								
	baseMean	log2FoldChange	lfcSE	stat	p∨alue	padj		
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>		
Crabp1	3885.6382	0.5944463	0.03712528	16.01190	1.055350e-57	1.387785e-53		
Clqtnf3	1533.2677	0.9165233	0.06142923	14.91999	2.443265e-50	1.606447e-46		
Zcchc5	912.0010	0.8111819	0.06129395	13.23429	5.562018e-40	2.438018e-36		
Fabp4	988.1449	-1.9359619	0.14925925	-12.97046	1.799357e-38	5.915385e-35		
Aqp1	679.7191	1.2630634	0.09789543	12.90217	4.375994e-38	1.150886e-34		
Tgfbi	1187.7486	0.5448491	0.04634381	11.75668	6.525354e-32	1.430140e-28		

Differential Analysis: Complex Design

```
> library(DESeq2)
> sampleFiles <- c("C1_R1.counts.txt", "C1_R2.counts.txt", "C1_R3.counts.txt",</p>
"C2_R1.counts.txt", "C2_R2.counts.txt", "C2_R3.counts.txt")
> sampleCondition <- factor(substr(sampleFiles, 1, 2))</pre>
> sampleTable <- data.frame(sampleName=sampleFiles, fileName=sampleFiles,</p>
condition=sampleCondition)
> sampleTable
                            fileName condition
        sampleName
1 C1_R1.counts.txt C1_R1.counts.txt
                                             C1
2 C1_R2.counts.txt C1_R2.counts.txt
                                             c1
3 C1_R3.counts.txt C1_R3.counts.txt
                                             c1
4 C2_R1.counts.txt C2_R1.counts.txt
                                             C2
                                             C2
5 C2_R2.counts.txt C2_R2.counts.txt
6 C2_R3.counts.txt C2_R3.counts.txt
                                             C2
dds <- DESeqDataSetFromHTSeqCount(sampleTable=sampleTable, directory=".",</pre>
design=~condition)
                      ~batch + condition
dds <- DESeq(dds)
results <- results(dds)</pre>
results <- results[order(results$FDR), ]</pre>
```

http://www.bioconductor.org/packages/2.12/bioc/html/DESeq2.html

Why adjusted p value in Genomics

N samples

P genes

• Lots of data in genomics that have lots of hypothesis tests.

- In RNA-seq we are doing p simultaneous tests! H1, H2, H3, ..., Hp
- For a 10k gene experiment, a standard p value cutoff 0.05 will give 500 DEGs by chance.

Integrative Analysis: Annotation

- Gene identifiers (e.g., org.Hs.eg.db) and models (e.g., TxDb.Hsapiens.UCSC. hg19.knownGene)
- Web-based resources (e.g., *biomaRt*, *KEGGREST*, *UniProt.ws*)
- Whole-genome annotations via AnnotationHub, e.g., *Ensembl, UCSC*

Hands on session

Differential Expression Analysis with DESeq2

• Workshop data:

/dfs6/pub/ucightf/workshop/

• URL to access HPC3 Jupyter environment: *biojhub-3.oit.uci.edu*