

Introduction to Sequencing-Based Spatial Transcriptomic Data Analysis Jenny Wu

Director of Bioinformatics Genomics Research and Technology Hub Chao Family Comprehensive Cancer Center UC Irvine

Outline

- Why spatial omics
- Spatial transcriptomic technologies: Sequencing vs Imaging based
- Data analysis pipeline and applications
 - ✓ Pre-processing: platform dependent
 - ✓ Downstream analysis and visualization
- Pre-processing of 10x Visium data with Space Ranger
- Downstream analysis pipeline for Visium Seurat Workflow
 - ✓ Data import
 - ✓ QC, filtering and feature selection
 - ✓ Dimension reduction and clustering
 - ✓ Data visualization and integration
- Advanced topics: cell type deconvolution, integration with scRNA data, and inter cellular communication

Why Spatial Biology

• Single cell sequencing reveals cellular heterogeneity

• Spatial information is important

Spatial technologies tested

Technology	RNA / Protein	Readout	Input tissue	Tissue area to evaluate	Panel size	Resolution	QC Metrics
CODEX	Protein (Antibody- based)	Imaging	FFPE sections (5µm onto coated CODEX coverslips)	up to 1.5 x 1.5 cm (but imaging time increases with area; realistically ~0.3-0.5cm ²)	Up to 43 antibodies	Single-cell / subcellular	
Visium	RNA	Sequencing	FFPE sections (5µm onto Visium slide; stained with H&E or IF) or fresh- frozen	6.5 x 6.5 mm square per section (0.43cm ²) ; 4 sections per slide	18,000 genes	55 μm per spot	~ 50,000 mean reads/spot ~ 4,000-5,000 genes per spot ~ 99% reads mapped to probe set
Slide-Seq	RNA	Sequencing	Fresh-frozen sections	up to 3 mm diameter circular area (~7mm ²)	Whole transcriptome	10 µm per bead	∼ 150 UMIs/bead
MERSCOPE	RNA	Imaging	Fresh- or fixed-frozen sections (FFPE soon possible?)	up to 1 cm ² within circular region w/ 20 mm diameter	300 genes	Single-cell / subcellular	Experiments failed
CosMx	RNA	Imaging	FFPE sections (5 µm onto the back of regular glass slides) or fresh- frozen sections	up to 25 FOV boxes with 0.9 x 0.7 mm (0.63mm ²) within tissue area of max 15 x 25mm (3.75cm ²)	960 genes	Single-cell / subcellular	 162 mean transcripts/cell 73% of transcripts assigned ~12.8 Mio transcripts detected in 0.116 mm² tissue area ~58,000 cells profiled
Xenium	RNA	Imaging	FFPE sections (5µm onto Xenium slides)	up to 9 x 31 mm (2.79cm ²) per slide, 2 slides per run	280 genes	Single-cell / subcellular	 ~ 110 median transcripts/cell 40 Mio transcripts detected in 0.89 cm² tissue area ~300,000 cells profiled

Imaging Based vs Sequencing Based

Moses et al, 2022

Sequencing based Spatial Transcriptomics

- ✓ 10x Visium or ST
- ✓ Slide-seq, Slide-seq v2

Downstream Analysis

Unsupervised clustering

DE analysis

Cell type mapping (scRNA-seq)

Spatial colocalization

Visium Data Analysis Work Flow

Analytical tools for ST Downstream Analysis

Primary Analysis with Space Ranger

10x Visium Data and Space Ranger Count

You can use SpaceRanger mkref command to build custom reference genome index

Space Ranger Output: Web Summary

Summary Gene Expression	
2,445 Number of Spots Under Tissue	Image ③ Tissue Detection and Fiducial Alignment
59,542 3,332 Mean Reads per Spot Median Genes per Spo	t
equencing ()	962
alid Barcodes	77.9%
alid UMIs 10	00.0%
equencing Saturation 6	59.5%
30 Bases in Barcode	96.4%
30 Bases in RNA Read	04.4%

Reads Mapped Confidently to Genome	88.3%
Reads Mapped Confidently to Intergenic Regions	6.3%
Reads Mapped Confidently to Intronic Regions	2.4%
Reads Mapped Confidently to Exonic Regions	79.6%

Fraction Reads in Spots Under Tissue	67.7%
Mean Reads per Spot	59,542
Mean Reads Under Tissue per Spot	41,459
Median UMI Counts per Spot	9 <mark>,</mark> 350
Median Genes per Spot	3,332

Space Ranger • count

A1_1-1

Summary Gene Expression

UMIs Detected ③

Tissue Plot with Spots Colored by UMI Count (Ö)

Color Scale: Default -

Clustering Type: Graph-based -

Clustering ?

Tissue Plot with Spots Colored by Clustering Ō

MatrixMarket Format for Feature Count Matrix

Sparse Feature Count Matrix (matrix.r	ntx)	Gene Info: f	eatures.tsv	Spot Info (barcodes.tsv)
%%MatrixMarket matrix coordinate integer general	ENSMUSG00000051951	Xkr4	Gene Expression	AAACTGCTGGCTCCAA-1
<pre>%metadata_json: {"software_version": "spaceranger-2.</pre>	0.0 ENSMUSG00000089699	Gm1992	Gene Expression	AAAGGGATGTAGCAAG-1
32285 728 3192349	ENSMUSG00000102331	Gm19938	Gene Expression	AAATACCTATAAGCAT-1
6 1 1	ENSMUSG00000102343	Gm37381	Gene Expression	AAATCGTGTACCACAA-1
9 1 1	ENSMUSG00000025900	Rp1	Gene Expression	ΔΔΔΤGGTCΔΔΤGTGCC-1
	ENSMUSG00000025902	Sox17	Gene Expression	
14 1 1	ENSMUSG00000104238	Gm37587	Gene Expression	
21 1 1	ENSMUSG00000104328	Gm37323	Gene Expression	
22 1 1	ENSMUSG00000033845	Mrpl15	Gene Expression	
31 1 1	ENSMUSG00000025903	Lypla1	Gene Expression	
35 1 3	ENSMUSG00000033813	Tcea1	Gene Expression	AACGGCCATCTCCGGT-1
39 1 4	ENSMUSG0000002459	Rgs20	Gene Expression	AACGTACTGTGGGTAC-1
43 1 1	ENSMUSG00000085623	Gm16041	Gene Expression	AACGTCAGACTAGTGG-1
53 1 1	ENSMUSG00000033793	Atp6v1h	Gene Expression	AACGTGCGAAAGTCTC-1
64 1 12	ENSMUSG00000025905	0prk1	Gene Expression	AACTCAAGTTAATTGC-1
67 1 3	ENSMUSG00000033774	Npbwr1	Gene Expression	AACTTGCCCGTATGCA-1
	ENSMUSG00000025907	Rb1cc1	Gene Expression	AAGACTGCAAGCTACT-1
	ENSMUSG00000090031	4732440[D04Rik 🛛 Gene Exp	resAAGAGATGAATCGGTA-1
104 1 1	ENSMUSG0000087247	Alkal1	Gene Expression	ΔΔGΔGCTCTTTΔTCGG-1
111 1 3	ENSMUSG00000033740	St18	Gene Expression	
119 1 1	ENSMUSG00000051285	Pcmtd1	Gene Expression	
120 1 3	ENSMUSG00000097797	Gm26901	Gene Expression	

These are the three files in the Space Ranger omics output folder that can be input for downstream Seurat analysis

Seurat: Data Import

Load a 10x Genomics Visium Spatial Experiment into a Seurat object

Source: R/preprocessing.R

Load a 10x Genomics Visium Spatial Experiment into a Seurat object

```
Load10X_Spatial(
   data.dir,
   filename = "filtered_feature_bc_matrix.h5",
   assay = "Spatial",
   slice = "slice1",
   filter.matrix = TRUE,
   to.upper = FALSE,
   image = NULL,
   ...
)
```


SpatialFeaturePlot(brain, features = c("nCount_Spatial", "nFeature_Spatial", "percent_mito","percent_h b"))

Normalization, Feature Selection: SCTransform

satijalab/ **sctransform**

Visit

R package for modeling single cell UMI expression data using regularized negative binomial regression

GitHub - satijalab/sctransform: R package for modeling single cell UMI expression data using regularized negative...

brain <- SCTransform(brain, assay = "Spatial", verbose = FALSE")</pre>

Default top 3000 HVGs

Linear Dimension Reduction

 Principle Component Analysis (PCA) is a standard technique for visualizing high dimensional data and for data pre-processing.

Matthias Scholz, 2015

brain <- RunPCA(brain, assay = "SCT", verbose = FALSE)</pre>

HVGs from SCTransform go into PCA

Clustering

- Distance/similarity metrics
- Algorithm choices
 - K means
 - Hierarchical
 - Density based
 - Graph partition

•

brain <- FindNeighbors(brain, reduction = "pca", dims = 1:30)
brain <- FindClusters(brain, verbose = FALSE)</pre>

Non Linear Dimension Reduction : UMAP

UMAP is not clustering!

Seurat: Visualization of Marker Genes

SpatialFeaturePlot(brain, features = top.features, ncol = 3, alpha = c(0.1,1))

Cell Type Deconvolution

- Bulk RNA-seq deconvolution
 - ✓ MusiC
 - ✓ SCDC
 - ✓ CIBERSORTx
- Sequencing based ST deconvolution
 - ✓ RCTD: robust cell type decomposition
 - ✓ cell2location
 - ✓ SpatialDWLS
 - ✓ STdeconvolve

Data Integration

- Allows for analyzing single cell samples from different technologies and conditions at the same time
 - ✓ Harmony

✓ LIGER

✓ Seurat

Integrating scRNA Data with ST Data

Tangram is a Python package, written in PyTorch and based on scanpy, for mapping single-cell (or single-nucleus) gene expression data onto spatial gene expression data. The single-cell dataset and the spatial dataset should be collected from the same anatomical region/tissue type, ideally from a biological replicate, and need to share a set of genes. Tangram aligns the single-cell data in space by fitting gene expression on the shared genes. The best way to familiarize yourself with Tangram is to check out our tutorial and our documentation.

If you don't use squidpy yet, check out our previous tutorial.

Cell-Cell Communication Network

• Use network-based analysis and ligand-receptor biology to predict signaling between groups of cells

Integrated Web-based CellChat Explorer

✓ CellChat
✓ SpaOTSc, CytoTalk
✓ SpaTalk

Cellular communication analysis

Discovery of dominant cell communication patterns

Patterns

Cell groups

Classification of signaling pathways Topological and functional similarity

Spatial Omics Data Analysis

Challenges:

- > Wide range of protocols and data processing pipelines
- Increased data volume, run time and memory usage demands more hardware and staff time
- > Lack of standardized metrics or benchmarks

Data Analysis Choices

- Tools choices: proprietary pipeline or open source?
- Local desktop, HPC or cloud computing? Cost, flexibility, capacity and ease of use.

Hands on Session

- Either Rstudio or Jupyter notebook environment
- Path to jupyter notebook for commands and expected output /dfs6/pub/ucightf/workshop/Seurat4_GRTHVisiumworkshop_Sept23. ipynb
- Use cp command to copy the notebook to your own directory
- Feel free to use your own data. Just point to the correct input directory