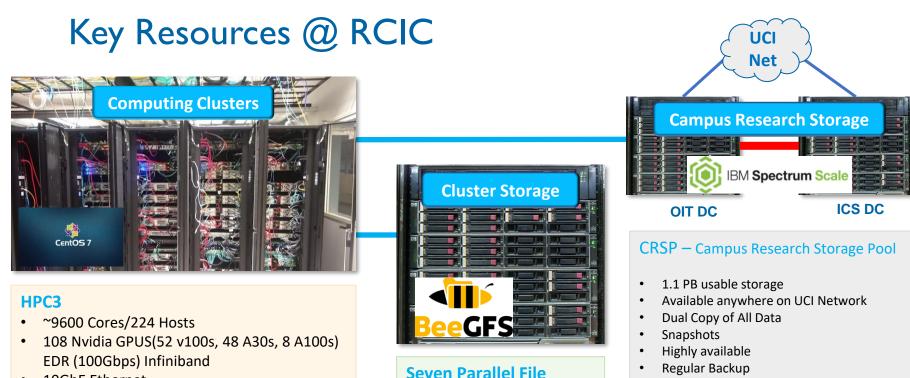
Overview of RCIC Resources. Some New Things. And BACKUP your STUFF

Philip Papadopoulos, Ph.D

ppapadop@uci.edu

https://rcic.uci.edu


- Build and maintain scalable computing and storage resources for researchers
- Work directly with researchers (grad students, faculty, post-docs, ...) to define the computing environment
- "Clusters R Us" computing and storage clusters. We work in midscale (10000 cores) computing and storage (5-10PB).
 - The next scale up (100K cores) and 50-100PB is handled better at national resource centers

RCIC Faculty Oversight

Executive Committee – Chair Filipp Furche, Professor, Dept. of Chemistry

- Help with strategic guidance and direction
- Approval chain for large purchases (> \$100K) and high-level policy
- Meet approximately semi-annually (next meeting: 10/4/2023)
- Advisory Committee
 - About 30 researchers from disciplines across UCI
 - Key feedback on what RCIC does right and wrong. They are not shy about expressing their views.

Formation of RCIC was the result of the UCI Cyberinfrastructure Vision 2016

- 10GbE Ethernet
- Minimum
 - 4GB memory/core
 - AVX2 instruction set (Epyc/Intel CPUs)

Systems

DFS3b, DFS4, DFS5, ..., DFS9

87% Full

- 7.75 PB usable storage
- ~6GB/sec bandwidth/System
- Regular Backups

Driving Principles

- Every Faculty member has no-cost access to significant resources
 - Cost to go beyond baseline is based on the cost of hardware only
- Position resources to be significant but not a replacement for national scale resources (like SDSC, NCSA, TACC, NCAR, ...)
- Software environments need to be consistent and well-managed
 - RCIC spends significant effort spent to build/maintain domain-specific environments
 - Not possible to "cover the waterfront"
 - We build 1000s of individual software components. ~I year cadence for updates to R, Python, Tensorflow, MATLAB, Conda, etc.
- Data integrity/availability are critical to success

HPC3 - Goals

- I. Enables users to have access to a larger compute/analysis system than they could reasonably afford "on their own"
- 2. Enables access to specialized nodes (large memory, 64bit GPU)
- 3. Fosters a growing community across UCI to utilize scalable computing (HPC and HTC)* for their scientific research program and teaching
- 4. Provides a well-managed software environment that forms the basis of a *reproducible* and more secure research environment

* HPC – High-Performance Computing HTC – High-Throughput Computing

What does HPC3 look like?

• HPC3 is 100s of servers, 1000s of compute cores

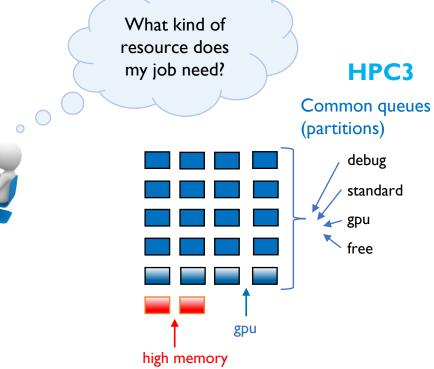
- 9632 x86 Cores
- 224 servers
- 4 different brands of hardware
- Grows every year

This is a "Sea" of physical resources.

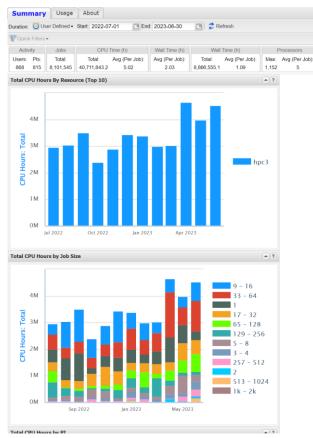
Interconnected by highspeed networking.

And Many Petabytes (I PB = 1000 TB = 1,000,000 GB) of Storage

- Seven Parallel File Systems (BeeGFS)
- One home area file system
- ~900 hard drives
- Every compute/GPU node has two local drives

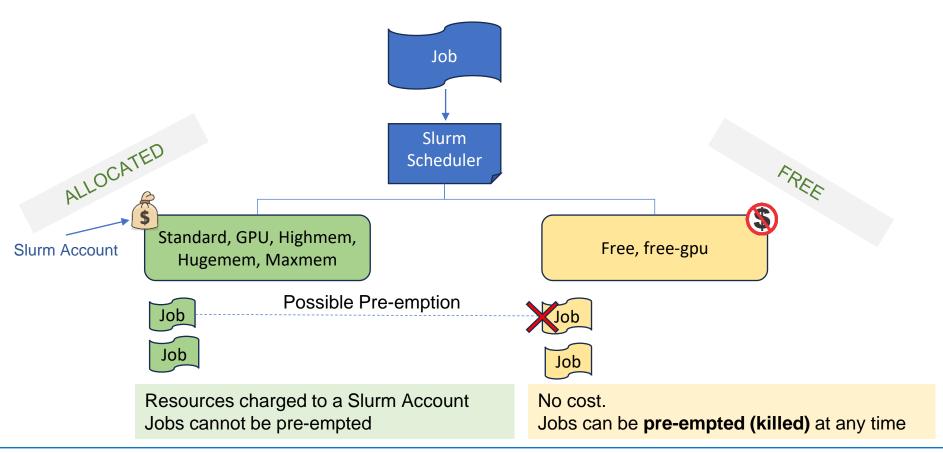

Detailed Nodes Specs

- Searchable/Filtered online view
 - Owner
 - Warranty Date
 - Cores/node
 - Memory/Node
- Can query Slurm for more specifics


🕴 Find a Reseller 🛛 🚬 UC Research IT Co 🗦	CSS 2019 - Researc	🚯 Plat	tform Login – Ca.	🦉 Messing 🕯	with Mesa 🔒 dune	O docker-stacks	/Dodk 🟮 ePi	us Sharefile	🐖 Finance, Humar
P HPC3	Gan	glia pro	ovides real ti	me high-lev	el view of HPC3 i	utilization. You	must be on t	the UCI/\	/PN
Overview	Net	work fo	or this link to	work.					
Reallocation									
Specs	Mos	st node	is in HPC3 h	ave at least	40 cores/node.				
Hardware configuration	You	may di	ownload noo	de details inf	fo as the CVS file	or browse the	table below.		
Networking									
8 Node Type	Clic	k on th	e column he	ader for sor	ting.				
Node Details	Shou	26	 entries 				Search		
Maintenance	310	N 20	• enuies				Search		
• STORAGE				N	lodes info updated 2	1 Feb 2023.			
How to use	N	ode 🔺	Owner 🕴	Chassis 🕴	Serial 0	Warranty 🕴	CPU 🕴	Mem	#CPUs 🕴
How to use							Intel(R)		
DFS	hi 14	pc3-	MRI	ProLiant XL170r	2M294204LF	2025-12-	Xeon(R) Gold	192	40
CRSP	ů.		MIN	Gen10	21427420461	18	6148 CPU @	172	40
CRSP clients							2.40GHz		
CRSP Troubleshooting							Intel(R) Xeon(R)		
ckor nousieshooting	14		MRI	ProLiant XL170r	2M294204L8	2025-12- 18	Gold 6148	192	40
	0	1		Gen10		*0	CPU @ 2.40GHz		
Software									
How to use	h	pc3-		ProLiant			Intel(R) Xeon(R)		
Environment modules	14	4-	MRI	XL170r	2M294204LG	2025-12- 18	Gold 6148	192	40
Software and modules updates	0.	2		Gen10			CPU @ 2.40GHz		
User installed software							Intel(R)		
		pc3-		ProLiant		2025-12-	Xeon(R) Gold		
SLURM workload manager	14		MRI	XL170r Gen10	2M294204L9	18	6148 CPU @	192	40
Jobs							2.40GHz		
Job example scripts							Intel(R)		
Account coordinators	hi 14	pc3-	MRI	ProLiant XL170r	2M294204LD	2025-12-	Xeon(R) Gold	192	40
	04		MIN	Gen10	2141274204LD	18	6148 CPU @	172	40
USER GUIDES & TUTORIALS							2.40GHz		
Beginner guide							Intel(R) Xeon(R)		
Reference guide	14	pc3- 4-	MRI	ProLiant XL170r	2M294204KX	2025-12-	Gold 6148	192	40
UNIX primer	0	5		Gen10		18	CPU @		
Data transfer							2.40GHz		
Tutorials				Deallant			Intel(R) Xeon(R)		
I REFERENCE	h; 14	pc3-	MRI	ProLiant XL170r	2M294204KL	2025-12-	Gold	192	40

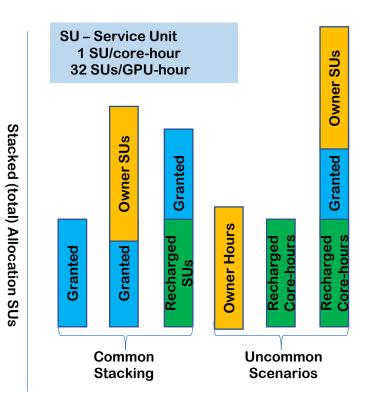
Submitting Jobs: Queues on HPC3

- Submit a job to the desired queue, asking for resources (CPUs, memory) you need
- You will <u>share the node with other</u> (<u>unrelated</u>) jobs, but linux cgroups are used to reserve memory, cpu for your job
- There are some maximums on queues to prevent resource starvation (most never see these)



A year of usage: July 2022 – June 2023

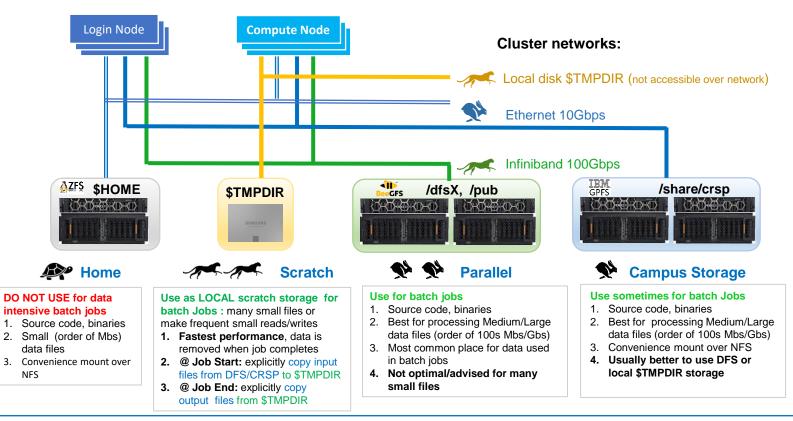
- <u>868 unique users</u> (~ 15% of all faculty AND Grad students) ran <u>8.1M jobs</u>
- 40.7M CPU hours = 4650 core-years
- Max job size 1152 cores
- Most impacted Month: April 2023
 - 4.65M CPU hours = 6460 core-months
- Users will see start to see wait times when instantaneous consumption is above 90%
- There are, however, a significant # of unclaimed (and now lost) cycles


Two Job Types on HPC3: Allocated and Free

How Do you Get "Money" into your Slurm Account

- SLURM Account monetary unit = SU (Service Unit). Charges: I/core-hour, 32/GPU-hour
- Account <u>OWNER</u> (Lab accounts) can <u>grant</u> access to <u>any other HPC3 user</u>
- No Cost Allocation for Faculty
 - CPU:We start you out at 100000 SUs/6 months. Refill based upon actual use. If no use, reduces to minimum of 12500 SUs/6 months
 - GPU: Can request 66K SUs/6 months. Refill based upon actual use. If NO use, account removed
 - <u>https://rcic.uci.edu/hpc3/reallocations.html#reallocation</u>
- Purchase Prepaid SUs
 - \$.01/SU. > \$5K = 20% discount.
 - Recharge via memorandum.We don't "post-bill hours"
- Buy Hardware
 - Must coordinate with RCIC prior to purchase. We'll assist with quotes from standard configs
 - SUs credited/year = 95% * (# cores + 32 * #GPUs)* 8760 hours/year
 - Credits computed every 6 months. Unused credits from previous 6 months are lost.
 - Cost of 48-core node, if every owner-credit is utilized:
 - 95% * 48 * 8760 * 6 years = 2.4M core hours. \$13K/2.4M hours = \$.0054/SU

Your allocation is "Stacking" of different types of SUs



- Every 6 months, we recompute your Allocation
- If you have unused SUs from the previous 6 months, they are lost (no rollover)
 - Recharged SUs: 18-month lifetime
- If you don't use enough of your granted hours, they will be reduced in the next cycle

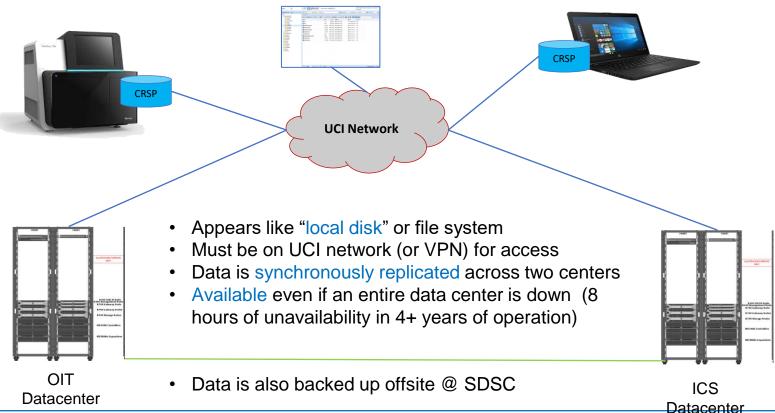
Details:

https://rcic.uci.edu/hpc3/allocations.html

Storage: Connectivity, File System architecture, and physical hardware all contribute to performance.

Storage Considerations

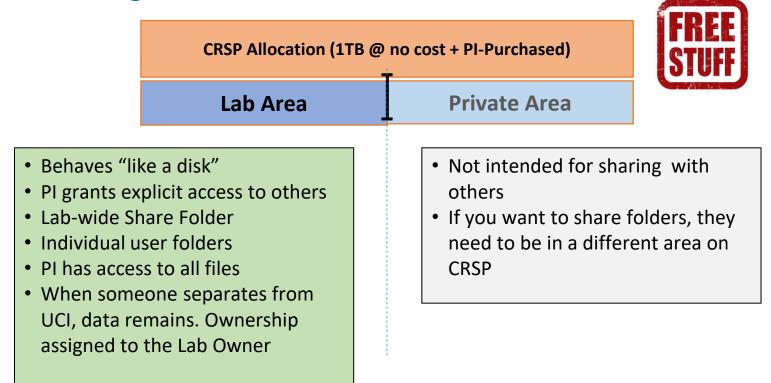
• Storage is shared among all users. The nature of networked-storage makes it possible for a single user to render a file system unusable for all.

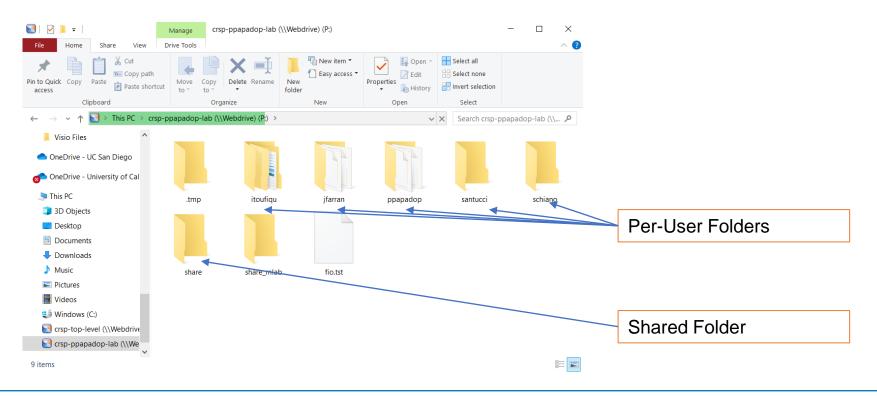

• User's responsibility

- Understand how their code(s) interact with their data/storage.
- Choose the appropriate file system
- THINK! What do you think your code does if 1000 copies are running at the same time and accessing the same folder?
- Repeated access to LOTS of small files (< 256KB each) are problematic for everything except FLASH.
- Parallel file systems (DFS/CRSP) are ideal for big files (> IMB). They are TERRIBLE for tiny files (< 64K)
- So, "Q:Why are there different file systems on HPC3? Flash would be so cool everywhere." A: Money

Fastscratch - Soon on a cluster near you

- Adding another Storage Capability to the mix
- What is it?
 - 100TB of All NVMe (Flash) storage configured
 - An RDMA-based NFS file server
 - NO BACKUP! NO SNAPSHOTS. Delete that file and it's G-O-N-E, baby.
- Model of Use:
 - A user can request an allocation lasting not more than 4 weeks.
 - One allocation/user. Deleted if not utilized. At the end of an allocation, all data is deleted.
 - Target: lots of jobs that need to the same set of input files that
 - Either Don't fit on local flash drives
 - Cost (time) too much to copy the data in/out every job
- This is "Cache" and it can go away at any time.
- WHY? Abusive Bioinformatics and Genomics Codes
 - Some Older code attempts to treat a file system as a "database" with many small files, repeated access.
 - Local flash is the ONLY file system that can weather this kind of abuse (use it when warranted)
 - RDMA NFS is cluster-wide (shareable among nodes/jobs). Much better than DFS/CRSP for this use case


Campus Storage: CRSP High-Level Overview


UCI Research Cyberinfrastructure Center

19

CRSP Storage – Lab-centric

A Sample Lab - ppapadop

CRSP2 – In procurement

- CRSP is 85-88% utilized and is almost 5 years old
- Since January 2023 have been working on a replacement system via standard request for proposal (RFP)
- Update (yesterday): RFP failed (vendors were exceptionally greedy and we don't have the deep pockets)
- New tactic update all CRSP hardware and double capacity (~2.2PB). Building an RFQ (request for quote) for replacement hardware
- Reality CRSP2 cannot be online before end of 2023 working to recover from failed RFP – goal: end of Q1 2024.

Storage – You can lease storage from RCIC

- We focus on delivering reliable storage via two different classes
- CRSP Campus Research Storage Pool available anywhere on campus.
- DFS Cluster-local, high-performance parallel file system

Feature	CRSP	Cluster-local (DFS)
Availability	Highly-available. Anywhere on campus, including HPC3	Infrequent downtimes occur. Cluster only
Cost	\$60/TB/Year ¹	\$100/TB/5 Years
Snapshots	Yes	No
Backups	Daily	Daily
dbGAP (P3)	Yes	Soon

¹ We expect this do go down somewhat with CRSP2.

High-level View costs-

No-Cost Allocations

Role	HPC3 Core Hours	GPU Hours	Home Area Storage	DFS Storage	CRSP Storage
Faculty	200K hours/year ¹	By Request ~4K hours/year ¹	50GB	1TB in Pub	1 TB
Student	1000 hours		50GB	1 TB in Pub	

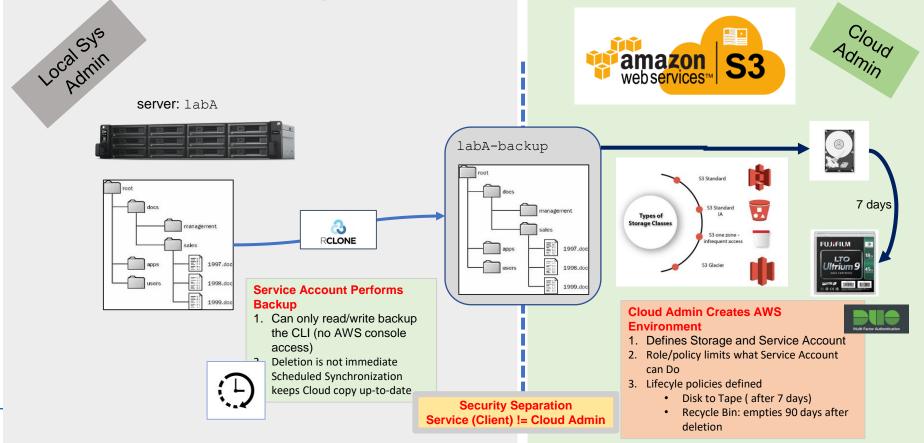
An Expansion Option: Core/GPU Recharge (vs. AWS UC Costs)

	HPC3 Core Hours	GPU Hours	Home Area Storage	DFS Storage	CRSP Storage
Faculty	\$.008/core hour	\$0.28/GPU hour	Not expandable	\$100/TB/5 years	\$60/TB/year
AWS Equivalent ³	C5n.large \$.029	P3.2xlarge \$0.84			S3 ² Standard \$145/TB/year

¹ Exact amounts dependent on # requests/available hardware

² Comparison difficult - S3 has higher durability, CRSP has no networking fee.

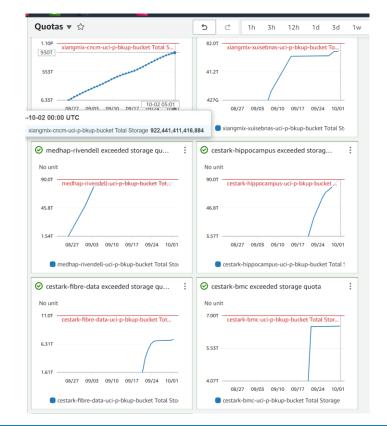
³ modeled on three-year reserved with UC discounts, on-demand is twice as expensive


Backup of your STUFF (data)

- <u>WE</u> do.
 - CRSP two copies on site + snapshots. Nightly backup to SDSC
 - DFS Nightly backup to SDSC or SBAK (pub)
 - Home Nightly backup to SBAK + Snapshots
- Desktops and Laptops (only for <u>unmanaged</u> systems in COHS)
 - Crashplan. Free. https://www.oit.uci.edu/services/research/crashplan/
 - 4 systems/user. Available for researchers (faculty, grad students, postdocs, research staff, undergrads in a research lab)
 - No limit on data but <u>practical</u> limit is 2-3TB
 - IF you have a use for it, PLEASE USE IT.
- Lab-based storage
 - Next Slide

Backing up Servers (10s to 1000s of TB)

- MANY Synology-based NAS (Network-attached Storage) in COHS
 - Backup to Google Drive MUST cease no later than March 2024 because unlimited storage is ending: <u>https://www.oit.uci.edu/services/communication-collaboration/google/</u>
 - Backup to OneDrive is not an option (They will be adopting similar limits that Google placed on all .edu)
- Backup to AWS
 - Currently funded by the Provost/Vice Chancellor ITD (Andriola)
 - Custom configuration, Some Software, on-boarding by RCIC.
 - Beta (Now) \rightarrow Production.
 - Evaluated (6 months) some "commercial" software
 - EITHER didn't scale
 - OR "stupidly" expensive
 - Our cost target is ~ \$35/TB/Year (\$35K/PB, \$350K/10PB)
 - Storage ~ \$25/TB/Year (Glacier Tape-based)
 - Sync costs ~ \$10/TB/Year


Basic Backup Overview: Utilize open source rclone for data synchronization to AWS S3

Current State

RCS3 - https://github.com/RCIC-UCI-Public/rcs3

- 6 servers in Beta
 - Synology (Intel-based)
 - Linux (RedHat, Ubuntu)
 - > IPB in aggregate
 - 30-60 minutes to onboard a new server (done over Zoom)
- RCIC only provisions the cloud storage, policies, permissions
- Local Admin installs/configures software
- Can restore, but RCIC must be involved.
 - Working on making this localadmin driven

NEW! IMPROVED! BETTER! FASTER! CHEAPER (Our new website: <u>https://rcic.uci.edu</u>)

- We have spent a lot of time creating a site with good information
- Searchable
- Better Navigation than old site
- LOOK here FIRST!

← → C n rcic.uci.edu		
	Researc 🚯 Platform Login – Ca 🧉 Messing with Mesa 🚨 dune 🎧 docker-stacks/Dock	. 🜀 ePlus Sharefile 🔤 Finance, Human Re
UC Research Cyberinfrastructure Center	♣ / RCIC User Documentation	View page source
latest	RCIC User Documentation	
Search docs	11	
	About RCIC	
ABOUT RCIC	Introduction	
Introduction	Allocations	
Allocations	Advisory Committees	
Advisory Committees	Our team	
Our team	News & Events	
News & Events	Getting started	
Getting started	Getting Help	
GETTING HELP	Contact	
Contact	Frequently Asked Questions	
Frequently Asked Questions	Support tickets	
Support tickets		
Support telecto	💡 Account	
P ACCOUNT		
Getting an account	Getting an account	
Acceptable use	Acceptable use Logging in	
Logging in	Logging in	
• HPC3	💡 HPC3	
Overview	Overview	
Reallocation	Reallocation	
	Specs	
Specs	Maintenance	
Maintenance	0.00	
• STORAGE	💡 Storage	
How to use	How to use	
HOME	HOME	
DFS	DFS	
CRSP	CRSP	
CRSP clients	CRSP clients	
	CRSP Troubleshooting	
CRSP Troubleshooting	Software	
Jor Hunde	Software	