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Outline

* Goals : Practical guide to statistical analysis of genomic data

e Statistical concepts
e Central Dogma of Statistics

* Basic concepts
 Random variable and probability distribution
* Hypothesis Testing
* Pvalue
* Linear models

e Statistics applications in omics data
* Generalized linear models (GLMSs) in count data
* Multiple hypothesis testing for omics
* Clustered data and batch effect
* Multi Omics integration

e Pathway Analysis
e Statistics vs Machine learning (ML)
 Hands on session




Why statistics in Omics

* Omics = Massive amount of Data

* Statistics in fundamental in genomics because it is
integral in the design, analysis and interpretation of

experiments.
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“Central Dogma” of Statistics

Probability

Descriptive

@ Statistics
O © (@)
O O

Sample

A Inferential Statistics




Basic Concepts

Biological Question ?
* Units: the basic objects on which the experiment is done.

Sampling, experimental vs observational _
Hypothesis HO

e Variable: a measured characteristic of a unit
Design Experiment

* Treatment: any specific experimental condition applied to

the units Collect Data

. H?/pothesis: A hypothesis is a statement about a parameter
of interest. Hypothesis testing is formalized to make a Compute p-value
decision between rejecting or not rejecting a null hypothesis
on the basis of a set of experimental observations and

measurements. Conclusion



Random Variables and Prob Distribution

e A Discrete r.v. has a countable number of possible

outcomes. e.g. genotype of a SNP, read counts in RNA-seq
etc. Categorical or Ordinal

* A Continuous r.v. can adopt any value in an interval of

numbers. e.g. height, weight, microarray measurements of
gene expression level etc.
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Hypothesis Testing

* The intent of hypothesis tesing is formally
examing two opposing conjectures H; (null
hypothesis) and H, (alternative hypothesis)

* Steps:

— Set up Hy and H, to state the assumption to be

tested. H, is the opposite of null. Is generally to be
believed by the researcher.

— Select a test statistic (¢, z etc)

— Set up decision rule (e.g. @« = 0.05)

— Compute test statistic

— Draw conclusion and summarize significance



P value

* Calculate the test statistic from the sample data

* Convert test statistic to a p value by comparing its
value to the null distribution: distribution of test
statistic under H,,.

* P value is the probability of observing
as or more extreme value by chance based
on the null distribution.

p value < a - Reject H,
p value > a = Do not reject H,



Linear Models (LM) and Hypothesis Testing

* The most widely used models in statistics .

* X: predictors, explanatory variable A
* Y: response variable, dependent variable

—

[

* Design (model) matrix X, contrast

Y =80+ piX1+...+B,X,+¢, wheree~ N(0,0%)

y = X[+ e,



Generalized Linear Models (GLM) in Count Data

* Response variable is assumed to follow an exponential family distribution
with mean
* 3 components: Random, Systematic, and Link Function

« Random component: Identifies dependent variable (Y) and its
probability distribution

» Systematic Component: Identifies the set of explanatory variables
(X1, X)

* Link Function: Identifies a function of the mean thatis a linear
function of the explanatory variables

g(u) =a+ B X+ + B X,



Classic Framework for Omics Data Analysis
Generative Approach: Regression

Y: gene expression

. mean_1=b0+b1
X: condition 7

geneExpression

condition

0 (control) or 1 (diseased)

y=1log2(q;) = by + b1x
y=1log2(q;) = by + b1x1 + by x;



GLMs in RNA-seq: DESeq2 Implementation
Kij ~ NB(pij, a;)

Hij = Sj4ij
logy (i) = b

K;; | counts of reads for gene %, sample j

pi; | fitted mean

a; | gene-specific dispersion

s; | sample-specific size factor

¢;; | parameter proportional to the expected true concentration of fragments
Tjx | the j-th row of the design matrix X

B; | the log fold changes for gene i for each column of X

https://bioconductor.org/packages/release/bioc/manuals/DESeq2/man/DESeq2.pdf



Design Matrix X

X * I

log2(u)
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Hypothesis Testing in RNA-Seqg

Null hypothesis (H,)

* The experimental condition r has no influence
on the expression of the gene under
consideration:

Hp, = Hp,
Alternative hypothesis (Hy)

MP1 i MPz



Hypothosis Testing with GLM

® HO: 61 — 0
e Likelihood Ratio Test

Lalt

Under Hy, D~X%? and p value can be calculated
using x? distribution.




Why adjusted p value in Genomics

P genes

N samples

* Lots of data in genomics that have
lots of hypothesis tests.

* In RNA-seq we are doing p
simultaneous tests! H1, H2, H3, ...,
Hp

* For a 10k gene experiment, a
standard p value cutoff 0.05 will give
500 DEGs by chance



Multiple Hypothesis Testing

e Simultaneous testing for thousands of genes
* p-values not sufficient to control false positive rate

* Control Family Wise Error Rate (FWER): Bonferroni’s solution is too
conservative for very high-dimensional data.

e Control False Discovery Rate (FDR) with Benjamini-Hochberg method.



Clustered Data and Mixed Effect Models

* Omics data are sometimes clustered or collected with repeated
measure

* It is important to take data dependence into account
* Implemented in R package nlme and Ime4

Y'ij = ﬁﬂ +Xij,1x51 + ... +Xij_4){ﬁ4 + U, +Fij~

Yu et al, 2022



Batch Effect in Omics Data

e Systematic variations or biases introduced
into the data due to technical factors
during sample processing or analysis

* When batch is known, use covariates
(imma, DESeq, Combat). When unknown,
use surrogate variable analysis (sva or
RUVseq)
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Statistics in Multi Omics Integration

A

* MOFA: a factor analysis model Samples, __ Fachory
that provides a general framework B |
for the integration of multi-omic
data sets in an unsupervised

fashion y
v_@

Features
——

Features
- 4-—————-

Rk

Assay
e Other methods such as LIGER, ”"

Seurat, and deep learning based 7’*"%
tools are popular.




Why Pathway Analysis

* Logical next step in any high R e 2
throughput experiment “ ...

ﬂﬂﬂﬂﬂ

* Goal: to characterize biological
meaning of joint changes in gene expiessiuin -~

 Why? Often sets of genes doing related functions are
changed



Pathway and Network Analysis

Pathway Analysis Methods:

* Functional category over representation: discrete

test for significance ( )
e Continuous test ( )
* Signaling Pathway Impact Analysis ( )

Network Analysis: )




Functional Category Enrichment

* Discrete tests: enrichment for groups in gene lists

» Select gene list at some Differentially | = Not total
X expressed differentially
predefined cutoff expressed
_ In the a b a+b
* For each gene list and pathway
functional category Not in the o g ord
cross-tabulate to get a 2X2 | pathway
contingency table total atC bd N
e Test for significance using

Fisher’s exact test

. . D
* FDR correction for multiple

a-+b\{fc+d
_\a ¢c ) _ (a+b)! (e+d)! (a+c)! (b+d)!

( n ) al bl d d nl
hypothesis testing a+c




Functional Categories in Pathway Analysis

* Gene Ontology __the Gene Ontology
. . Open menus

* Biological Process Gene Ontology Home
FaQ

° M Olecu Ia r Fu nction ::::'”ads The Gene Ontology project Iprovidels a controlleld vocabulary to describe

gene and gene product attributes in any organism. Read more about
Documentation
. the Gene COntology. ..

e Cellular Location About GO
Cantact GO Search the Gene Ontology Database
Site Map

Search for genes, proteins or GO terms using AmIGO
* Pathway Databases -
@ gene or protein name GO term or 1D
[ ]
K EG G AmiGO s the officlal GO browser and search engine. Browse the Gene Ontology
B . C with AmiGo
[ ]
lo0La rta GO website
[ ] B roa d I n Stit ute | . EO ldm(nmloan.:ls. iT?\u.dinlg lontol_o_g\_; ﬁ_lels., énnoltatilons-an.c{ 1_:he GOdata_base

e Commercial knowledge bases
such as IPA

e Other

* Transcription factor targets
* Protein complexes _
» Self-Defined e e

Transcription




Commerical and Open Source Pathway

Analysis Software

* GeneGo/MetaCore www.genego.com)

* |Ingenuity Pathway Analysis www.ingenuity.com)
* Pathway Studio (www. ariadnegenomics.com)
* GenMAPP (www.genmapp.com)

* WikiPathways www. wikipathways.org)

v cPath (cbio.mskcc.org/cpath)

* BioCycC www.biocyc.org)

* Pubgene www.pubgene.org)

- PANTHER (www. pantherdb.org)

e WebGestalt (bioinfo.vanderbilt.edu/webgestalt/)
* ToppGene Suiteytoppgene.cchme.org/)

v DAVID (david.abcc.ncifcrf.gov/)

“ Pathway Pa | I'Tte r(pathwampaintengsa—online.de;’]



Ingenuity Pathway Analysis Tool
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Statistics vs. Machine Learning (ML)

e Statistics draws population inferences from a sample;
ML finds generalizable predictive patterns

e Inferences vs Prediction. Models can be shared Al

e Statistics requires choosing model to incorporate our !’

knowledge of the system; ML requires choosing a
predictive algorithm by its empirical capabilities

e ML has limited applications in omics analysis



Generative vs.

Discriminative

Machine Learning Methods
v v

Supervised Unsupervised

X > Y X

YOO ./ x Al

e Regression e Dimension reduction (PCA,
o Linear regression tSNE, UMAP, NMF, etc)
e C(lassification e Clustering (K means,
o Logistic regression hierarchical, etc)
o Random forest _
o SVM e Factor analysis
o Decision trees e Outlier detection

e Deep learning (DL) with neural networks



Challenges and Limitations

* Curse of dimensionality, imbalanced class
sizes, overfitting, high noise

e Limited amount of ground truth labeled data
in genomics for supervised learning

e Supervised learning model interpretation from
biological perspective



Summary

Al/ML methods are increasingly important in
large scale omics data analysis

Without careful consideration, practical utility
of supervised learning in basic research is
limited

Deep learning holds great promises for
functional genomics and clinical diagnhosis

Successful application of ML methods requires
close collaboration of domain experts and
data scientists



