

Introduction to Statistics in Genomics

Jenny Wu, Ph.D.

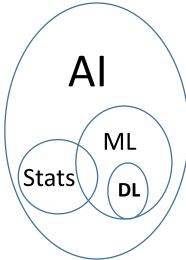
Director of Bioinformatics Genomics Research and Technology Hub Chao Family Comprehensive Cancer Center UC Irvine

Outline

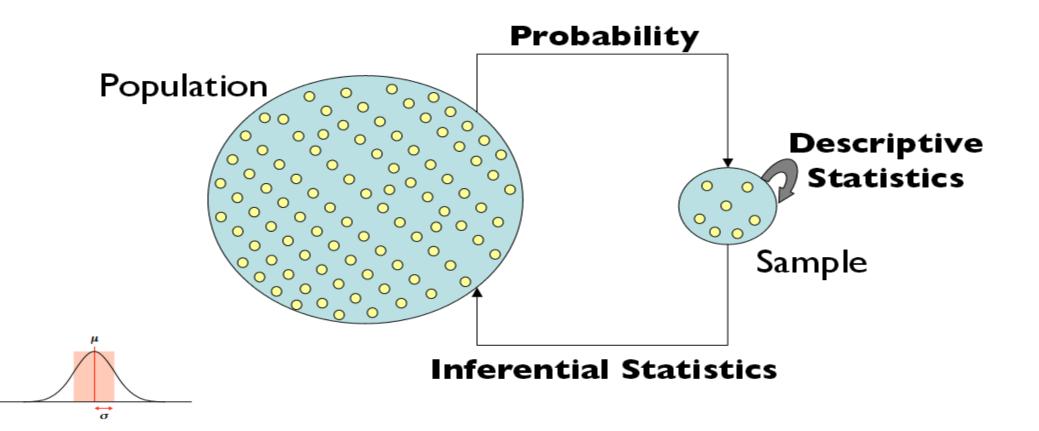
- Goals : Practical guide to statistical analysis of genomic data
- Statistical concepts
 - Central Dogma of Statistics
 - Basic concepts
 - Random variable and probability distribution
 - Hypothesis Testing
 - P value
 - Linear models
- Statistics applications in omics data
 - Generalized linear models (GLMs) in count data
 - Multiple hypothesis testing for omics
 - Clustered data and batch effect
 - Multi Omics integration
- Pathway Analysis
- Statistics vs Machine learning (ML)
- Hands on session

Why statistics in Omics

- *Omics* = Massive amount of Data
- Statistics in fundamental in genomics because it is integral in the *design*, *analysis* and *interpretation* of experiments.

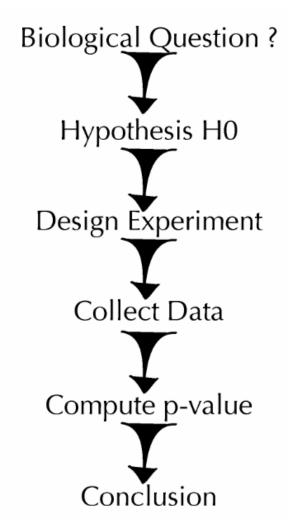


"Central Dogma" of Statistics



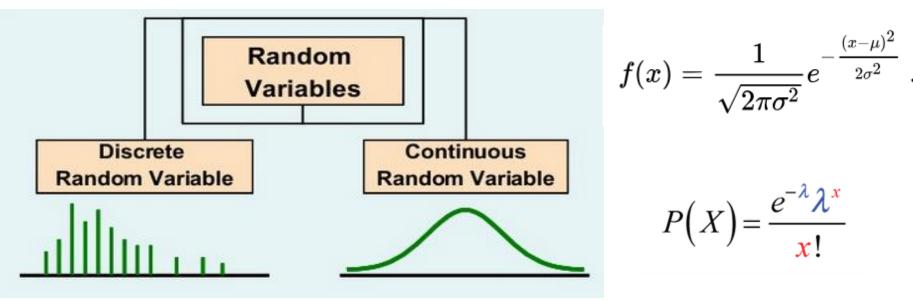
Basic Concepts

- Units: the basic objects on which the experiment is done. Sampling, experimental vs observational
- Variable: a measured characteristic of a unit
- Treatment: any specific experimental condition applied to the units
- Hypothesis: A hypothesis is a statement about a parameter of interest. Hypothesis testing is formalized to make a decision between rejecting or not rejecting a null hypothesis on the basis of a set of experimental observations and measurements.



Random Variables and Prob Distribution

- A Discrete *r.v.* has a countable number of possible outcomes. *e.g. genotype of a SNP, read counts in RNA-seq etc.* Categorical or Ordinal
- A Continuous r.v. can adopt any value in an interval of numbers. e.g. height, weight, microarray measurements of gene expression level etc.

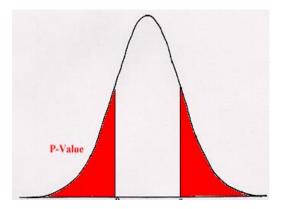


Hypothesis Testing

- The intent of hypothesis tesing is formally examing two opposing conjectures H_0 (null hypothesis) and H_A (alternative hypothesis)
- Steps:
 - Set up H_0 and H_A to state the assumption to be tested. H_A is the opposite of null. Is generally to be believed by the researcher.
 - Select a test statistic (t, z etc)
 - Set up decision rule (e.g. $\alpha = 0.05$)
 - Compute test statistic
 - Draw conclusion and summarize significance

P value

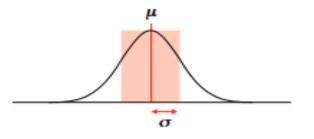
- Calculate the test statistic from the sample data
- Convert test statistic to a p value by comparing its value to the null distribution: distribution of test statistic under H_0 .
- P value is the probability of observing as or more extreme value by chance based on the null distribution.



 $p \ value \leq \alpha \rightarrow Reject H_0$ $p \ value > \alpha \rightarrow Do \ not \ reject H_0$

Linear Models (LM) and Hypothesis Testing

- The most widely used models in statistics
- X: predictors, explanatory variable
- Y: response variable, dependent variable
- Design (model) matrix X, contrast



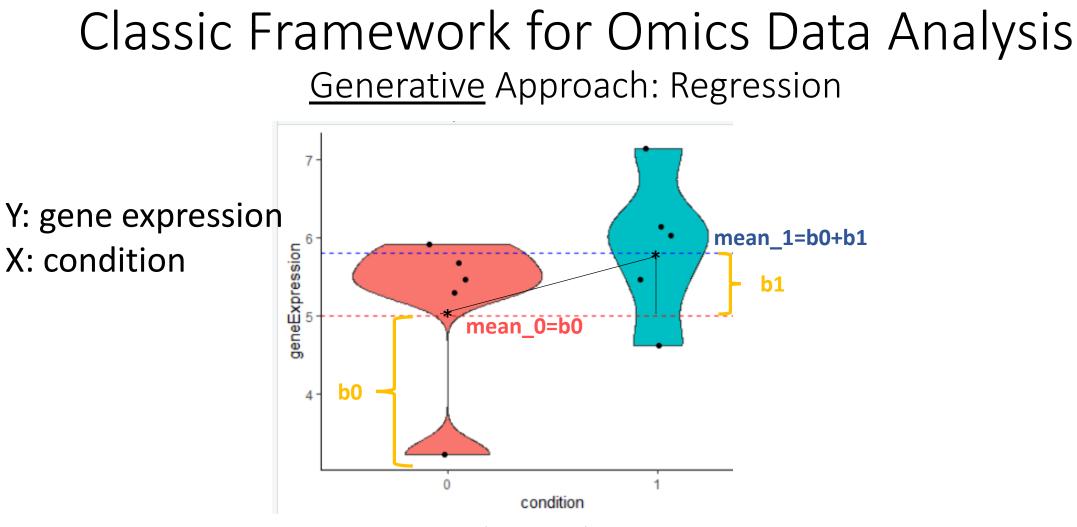
$$Y=eta_0+eta_1X_1+\ldots+eta_pX_p+\epsilon, \quad ext{where } \epsilon\sim N(0,\sigma^2),$$

$$y = X\beta + e,$$

Generalized Linear Models (GLM) in Count Data

- Response variable is assumed to follow an exponential family distribution with mean
- 3 components: Random, Systematic, and Link Function
 - Random component: Identifies dependent variable (Y) and its probability distribution
 - Systematic Component: Identifies the set of explanatory variables $(X_1, ..., X_k)$
 - Link Function: Identifies a function of the mean that is a linear function of the explanatory variables

$$g(\mu) = \alpha + \beta_1 X_1 + \dots + \beta_k X_k$$



Condition: x = 0 (*control*) or 1 (*diseased*)

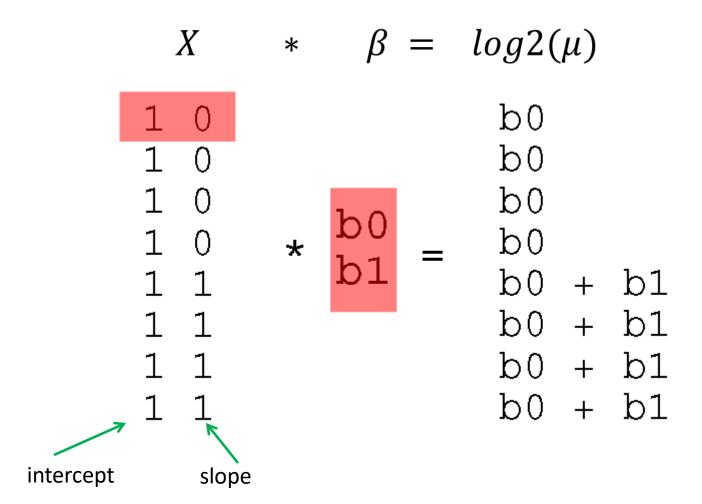
Gene Expression: $y = log2(q_i) = b_0 + b_1x$ $y = log2(q_i) = b_0 + b_1x_1 + b_2x_2$

GLMs in RNA-seq: DESeq2 Implementation

$$K_{ij} \sim \text{NB}(\mu_{ij}, \alpha_i)$$
$$\mu_{ij} = s_j q_{ij}$$
$$\log_2(q_{ij}) = x_{j*} \vec{\beta}_i$$

- counts of reads for gene i, sample j K_{ij}
- fitted mean μ_{ij}
- gene-specific dispersion α_i
- sample-specific size factor s_j
- parameter proportional to the expected true concentration of fragments q_{ij}
- the *j*-th row of the design matrix X
- x_{j*} $\vec{\beta}_i$ the log fold changes for gene i for each column of X

Design Matrix X



Hypothesis Testing in RNA-Seq

Null hypothesis (H_0)

 The experimental condition r has no influence on the expression of the gene under consideration:

 $\mu_{
ho_1}$ = $\mu_{
ho_2}$

Alternative hypothesis (H_0)

$$\mu_{\rho_1} \neq \mu_{\rho_2}$$

Hypothosis Testing with GLM

- $H_0: \beta_1 = 0$
- Likelihood Ratio Test

$$D = -2 * \log\left(\frac{L_0}{L_{alt}}\right)$$

Under H_0 , $D \sim \chi^2$ and p value can be calculated using χ^2 distribution.

Why adjusted p value in Genomics

N samples

P genes

- Lots of data in genomics that have lots of hypothesis tests.
- In RNA-seq we are doing p simultaneous tests! H1, H2, H3, ..., Hp
- For a 10k gene experiment, a standard p value cutoff 0.05 will give 500 DEGs by chance.

Multiple Hypothesis Testing

- Simultaneous testing for thousands of genes
- p-values not sufficient to control false positive rate
- Control Family Wise Error Rate (FWER): Bonferroni's solution is too conservative for very high-dimensional data.
- Control False Discovery Rate (FDR) with Benjamini-Hochberg method.

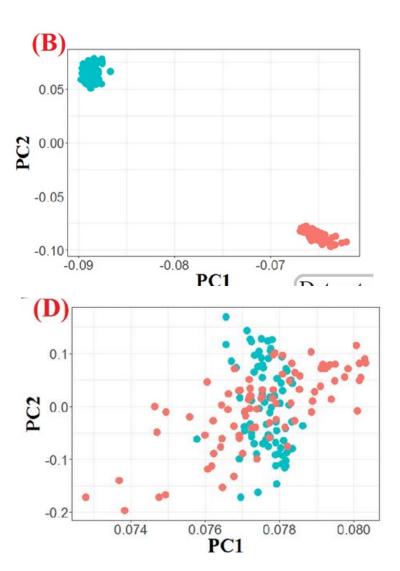
Clustered Data and Mixed Effect Models

- Omics data are sometimes clustered or collected with repeated measure
- It is important to take data dependence into account
- Implemented in R package *nlme* and *lme4*

$$Y_{ij} = \beta_0 + x_{ij,1} \mathbf{x} \beta_1 + \ldots + x_{ij,4} \mathbf{x} \beta_4 + u_i + \varepsilon_{ij},$$

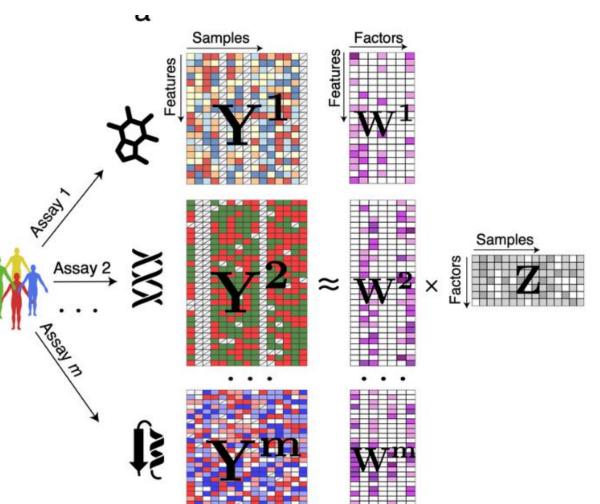
Batch Effect in Omics Data

- Systematic variations or biases introduced into the data due to technical factors during sample processing or analysis
- When batch is known, use covariates (*limma, DESeq, Combat*). When unknown, use surrogate variable analysis (*sva* or *RUVseq*)



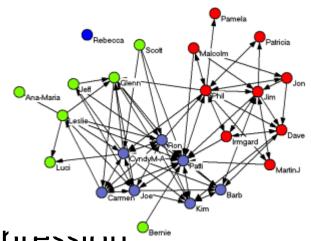
Statistics in Multi Omics Integration

- MOFA: a factor analysis model that provides a general framework for the integration of multi-omic data sets in an unsupervised fashion
- Other methods such as LIGER, Seurat, and deep learning based tools are popular.



Why Pathway Analysis

- Logical next step in any high throughput experiment
- Goal: to characterize biological meaning of joint changes in gene expression
- Why? Often sets of genes doing related functions are changed



Pathway and Network Analysis

Pathway Analysis Methods:

- Functional category over representation: discrete test for significance (*BiNGO, David, Gorrila, IPA etc*)
- Continuous test (GSEA, PAGE)
- Signaling Pathway Impact Analysis (*iPathway Guide*)

Network Analysis: (WGCNA, Cytoscape etc)

Functional Category Enrichment

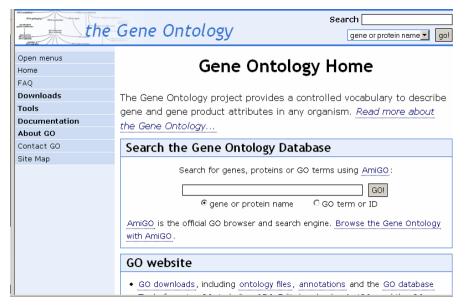
- Discrete tests: enrichment for groups in gene lists
 - Select gene list at some predefined cutoff
 - For each gene list and functional category cross-tabulate to get a 2X2 contingency table
 - Test for significance using Fisher's exact test
 - FDR correction for multiple hypothesis testing

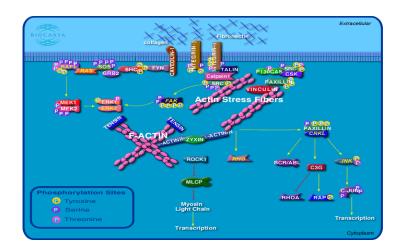
	Differentially expressed	Not differentially expressed	total
In the pathway	а	b	a+b
Not in the pathway	С	d	c+d
total	a+c	b+d	n

$$p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}} = \frac{(a+b)! \ (c+d)! \ (a+c)! \ (b+d)!}{a! \ b! \ c! \ d! \ n!}$$

Functional Categories in Pathway Analysis

- Gene Ontology
 - Biological Process
 - Molecular Function
 - Cellular Location
- Pathway Databases
 - KEGG
 - BioCarta
 - Broad Institute
 - Commercial knowledge bases such as IPA
- Other
 - Transcription factor targets
 - Protein complexes
 - Self-Defined



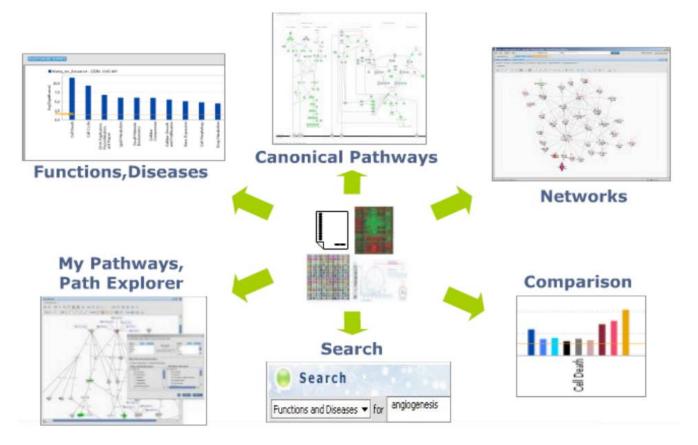


Commerical and Open Source Pathway Analysis Software

- GeneGo/MetaCore (www.genego.com)
- Ingenuity Pathway Analysis (www.ingenuity.com)
- Pathway Studio (www.ariadnegenomics.com)
- GenMAPP (www.genmapp.com)
- WikiPathways (www.wikipathways.org)
- cPath (cbio.mskcc.org/cpath)
- BioCyc (www.biocyc.org)
- Pubgene (www.pubgene.org)
- PANTHER (www.pantherdb.org)
- WebGestalt (bioinfo.vanderbilt.edu/webgestalt/)
- ToppGene Suite(/toppgene.cchmc.org/)
- DAVID (david.abcc.ncifcrf.gov/)
- Pathway Painter(pathway.painter.gsa-online.de/)

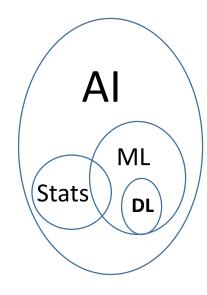
Ingenuity Pathway Analysis Tool

INGENUITY[°] PATHWAY ANALYSIS

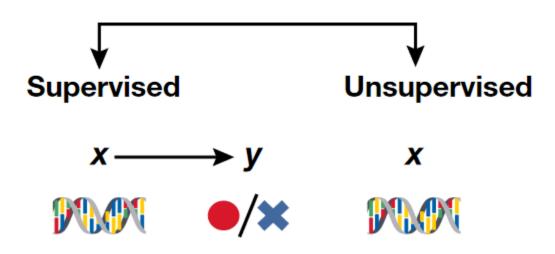


Statistics vs. Machine Learning (ML)

- Statistics draws population inferences from a sample; ML finds generalizable predictive patterns
- Inferences vs Prediction. Models can be shared
- Statistics requires choosing model to incorporate our knowledge of the system; ML requires choosing a predictive algorithm by its empirical capabilities
- ML has limited applications in omics analysis



Machine Learning Methods



- Regression

 Linear regression
- Classification
 - Logistic regression
 - Random forest
 - SVM

. . .

• Decision trees

- Dimension reduction (PCA, tSNE, UMAP, NMF, etc)
- Clustering (K means, hierarchical, etc)
- Factor analysis
- Outlier detection
- Deep learning (DL) with neural networks

Generative vs.

Discriminative

Challenges and Limitations

- Curse of dimensionality, imbalanced class sizes, overfitting, high noise
- Limited amount of ground truth labeled data in genomics for supervised learning
- Supervised learning model interpretation from biological perspective

Summary

- AI/ML methods are increasingly important in large scale omics data analysis
- Without careful consideration, practical utility of supervised learning in basic research is limited
- Deep learning holds great promises for functional genomics and clinical diagnosis
- Successful application of ML methods requires close collaboration of domain experts and data scientists