

CCAGGCGAGTTTCCCCAAAGG GGCATTATTGGCCAATCGAAT GATCCAGCCTTCAAACGGGT TGCCACTGGAGGCCCAATACC

OBERT R. SPRAGUE FOUNDATION HALL

Introduction to RNA-Seq Data Analysis

Jenny Wu

Director of Bioinformatics Genomics Research and Technology Hub Chao Family Comprehensive Cancer Center UC Irvine

Outline

- Introduction: RNA-Seq data generation and its applications
- RNA-Seq Data Analysis
 - ✓ Experimental Design

✓ General workflow and Data Analysis Pipeline

- Preprocessing to count matrix
- Data normalization
- Exploratory Data Analysis
- Statistical analysis of differential gene expression (afternoon)
- Downstream Pathway and network analysis
- Summary

RNA-Seq Data Generation

RNA-Seq Applications

- ✓ Differential gene expression (DGE)
- ✓ Differential alternative splicing
- ✓ Transcript discovery
- ✓ Genome annotation (de novo transcriptome assembly)
- ✓ Allele specific expression
- ✓ Differential polyadenylation
- ✓ RNA editing, fusion discovery, variant detection..

Experimental Design

✓ Sample size estimation and power analysis

- Library type : polyA enriched or ribo reduction, stranded or not, ERCC
- Sequencing: read length, paired end or single read, sequencing coverage

Our most popular setup: ribo reduction, stranded, PE100, 25-50M/sample, 3+ biological replicates per condition.

Experimental Design

Statistical analysis of data with complex design can be done using R based tools such as DESeq2 and limma

Batch Effect

- Randomization and Replication
 - Don't do all of one factor level together
 - Arrange the samples randomly

Have one replicate in each row and each column!

 If batch effects are spread evenly over factor levels, they can be accounted for statistically (blocking)

RNA-Seq Data Pipeline for DGE

Transcript Counting vs. Classic Approach

- Novel transcripts, mutation identification
- Performance: execution time, RAM usage, multi-reads
- Downstream analysis: Gene length and GC content correction

Expression Quantification: Count Table

	Sample 1	Sample 2	•••	Sample N
Gene 1	<i>K</i> ₁₁	<i>K</i> ₁₂	•••	K_{1N}
Gene 2	<i>K</i> ₂₁	<i>K</i> ₂₂	•••	K_{2N}
Gene p	K_{p1}	K_{p2}		K_{pN}

- ✓ K_{ij} is discrete positive, skewed, large dynamic range.
- ✓ p≫ N small number of replicates for bulk RNA-seq.
- \checkmark In scRNA-seq, each sample is a cell. So N can be bigger than p.

RNA-Seq: Normalization

Gene-length bias

✓ Differential expression of longer genes is more significant because long genes yield more reads

RNA-Seq normalization methods:

- Scaling factor based: Total count, upper quartile, median, DESeq2, TMM in edgeR
- ✓ Quantile, FPKM (cufflinks)
- ✓ ERCC

Normalize by gene length and by number of reads mapped, e.g. **RPKM/FPKM** (reads/fragments per kilo bases per million mapped reads) or **TPM** (Transcripts per million). Commonly Used Computing Techniques in RNA-Seq

- ✓ Dimension Reduction: *PCA, t-SNE, UMAP etc*
- ✓ Feature Selection
- ✓ Clustering: *K means, hierarchical etc*
- ✓ Differential Statistics: linear and generalized linear models.

Exploratory Data Analysis: Linear Dimension Reduction

 Principle Component Analysis (PCA) is a standard technique for visualizing high dimensional data and for data compression.

Dimension Reduction with PCA

- ✓ Reduce p-dimensional dataset into much smaller number (2,3)
- ✓ Find a new(smaller) set of variables that retains most of the information in all samples
- ✓ Effective way to visualize multivariate data
- ✓ PCA should be applied on data that have approximately the same scale in each variable

Hierarchical Clustering

- Agglomerative method: bottom up. Starts with N groups.
- Steps:
 - Define distance (e.g. Euclidean, correlation)
 - Compute distance and merge progressively
- Results: a tree(dendrogram) showing how
 close things are to
 each other.

CLUSTER 1

CLUSTER 2

RNA-Seq Data Visualization

- IGV, Sashimi plots
- Volcano plots, heat maps, PCA

log2 fold change

Visualizing RNA-Seq mapping with IGV

http://www.broadinstitute.org/igv/UserGuide

Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Thorvaldsdóttir H et al. Brief Bioinform. 2013

Gene Expression Data Structure in R/Bioconductor:

SummarizedExperiment/ExpressionSet

Why Pathway Analysis

 Logical next step in any high throughput experiment

Goal: to characterize biological

meaning of joint changes in gene expression

 Why? Often sets of genes doing related functions are changed

Pathway and Network Analysis

Pathway Analysis Methods:

- Functional category over representation: discrete test for significance (*GOrilla, EnrichR, IPA, David etc*)
- Continuous test (GSEA, PAGE)
- Signaling Pathway Impact Analysis (*iPathway* Guide)

Network Analysis: (WGCNA, Cytoscape etc)

Provenance and Reproducibility

- Software containerization
- Jupyter notebook environment

User Authentication

Languages in Bioinformatics

Resources in Data Analysis

Questions and Discussion

• Questions?

Thanks for your time and attention!