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RNA-Seq Data Generation

Generate cDNA, fragment,

Isolate RNAs
size select, add linkers
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RNA-Seq Applications

v Differential gene expression (DGE)
v Differential alternative splicing
v’ Transcript discovery

v'Genome annotation (de novo transcriptome
assembly)

v’ Allele specific expression
v Differential polyadenylation

v'RNA editing, fusion discovery, variant
detection..



Experimental Design

v’ Sample size estimation and power analysis

v Library type : polyA enriched or ribo reduction,
stranded or not, ERCC

v Sequencing: read length, paired end or single
read, sequencing coverage

Our most popular setup: ribo reduction, stranded,
PE100, 25-50M/sample, 3+ biological replicates per
condition.



Experimental Design

v’ Simple Design

v’ Complex Design
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Statistical analysis of data with complex design can be done using R based tools such as

DESeqg2 and limma
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Batch Effect

 Randomization and Replication
— Don’t do all of one factor level together

— Arrange the samples randomly
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— If batch effects are spread evenly over factor levels,
they can be accounted for statistically (blocking)

http://www.cellsignet.com/media/templ.html



Raw reads

RNA-Seq Data Pipeline for DGE
[ )
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Transcript Counting vs. Classic Approach

* Novel transcripts, mutation identification

* Performance: execution time, RAM usage,

multi-reads

* Downstream analysis: Gene length and GC

content correction



Expression Quantification: Count Table
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Gene 1
Gene 2 K21 KZZ KZN
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v K;; is discrete positive, skewed, large dynamic range.
v' p>» N small number of replicates for bulk RNA-seq.

v In scRNA-seq, each sample is a cell. So N can be bigger than p.



RNA-Seq: Normalization
Gene-length bias

v’ Differential expression of longer genes is more
significant because long genes yield more reads

RNA-Seq normalization methods:

v’ Scaling factor based: Total count, upper quartile,
median, DESeq2, TMM in edgeR

v' Quantile, FPKM (cufflinks)

v' ERCC

Normalize by gene length and by number of
reads mapped, e.g. RPKM/FPKM
(reads/fragments per kilo bases per million
mapped reads) or TPM (Transcripts per million).



Commonly Used Computing
Techniques in RNA-Seq

v'Dimension Reduction: PCA, t-SNE, UMAP etc
v’ Feature Selection
v Clustering: K means, hierarchical etc

v Differential Statistics: linear and generalized

linear models.



Exploratory Data Analysis:
Linear Dimension Reduction
v’ Principle Component Analysis (PCA) is a

standard technique for visualizing high
dimensional data and for data compression.

component space
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Dimension Reduction with PCA

v Reduce p-dimensional dataset into much smaller

number (2,3)

v Find a new(smaller) set of variables that retains

most of the information in all samples
v Effective way to visualize multivariate data

v PCA should be applied on data that have

approximately the same scale in each variable



Hierarchical Clustering

* Agglomerative method: bottom up. Starts
with N groups.

* Steps:
— Define distance (e.g. Euclidean, correlation)

— Compute distance and merge progressively

* Results: a tree(dendrogram) showing how
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RNA-Seq Data Visualization

Exprossion heat map
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Visualizing RNA- Seq mapping with IGV

Specify range or tem in search box
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Integrative Genomics Viewer (IGV): high-performance genomics data
visualization and exploration. Thorvaldsdottir H et al. Brief Bioinform. 2013



http://www.broadinstitute.org/igv/UserGuide

Gene Expression Data Structure

in R/Bioconductor:
SummarizedExperiment/ExpressionSet
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Why Pathway Analysis

* Logical next step in any high
throughput experiment

* Goal: to characterize biological
meaning of joint changes in gene expression

 Why? Often sets of genes doing related
functions are changed



Pathway and Network Analysis

Pathway Analysis Methods:

* Functional category over representation:
discrete test for significance (Gorilla, EnrichR, IPA,
David etc)

e Continuous test (GSEA, PAGE)

e Signaling Pathway Impact Analysis (irathway
Guide)

Network Analysis: (WGCNA, Cytoscape etc)




Provenance and Reproducibility

e Software containerization
e Jupyter notebook environment

User Authentication
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Languages in Bioinformatics

M BioRuby R 9
N

Open source bininformatics library for Ruby
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Resources in Data Analysis
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Questions and Discussion

e Questions?

Thanks for your time and attention!



