

CCAGGCGAGTTTCCCCAAAGGG GGCATTATTGGCCAATCGAATC GATCCAGCCTTCAAACGGGTTC TGCCACTGGAGGCCCAATACC

> OBERT R. SPRAGUE FOUNDATION HALL

Commonly Used Analytical Tools for Bulk RNA-seq

Fabio Macciardi MD PhD

Laboratory of Molecular Psychiatry

UC Irvine

Outline

Pipeline(s) for RNA-Seq data analysis

- Digital RNA-sequencing = measures gene expression in true genome-wide fashion (all the c/nc RNA)
- Also it enables detection of mutations (SNPs), alternative splicing, allele specific expression, and fusion genes
- Can also be used to detect non-coding / regulatory RNA "genes" (e.g., miRNA, siRNA, IncRNAs, TSS, enhancers, ...)
- Hence, methods and tools to perform RNA-seq analyses must be chosen based on the given goal(s) of the research

RNA SEQUENCING: A QUICK RECAP

RNA – seq quick recap

From the genomic region (DNA) to the RNA ... and back

Step 1: prepare RNA-Seq Libraries

Step 2: select the good-sized RNA molecules

From the "n" RNA fragments select those fragments that range from ~150 bp to ~ 400 bp

Step 3: For each "fragment" of 150 to 300 bp long you then sequence the first 100bp FWD (Read1) and the last 100bp REV (Read2)

Step 4: The random fragmentation process generates <u>millions</u> of RNA (or cDNA) fragments, in excess of the total length of the transcriptome. By chance, fragments can partially or completely overlap to each other, "covering" the whole transcriptome

Step 5: the read are aligned against a reference genome

Short reads mRNA Sequencing (Illumina)

QC of RNA reads: an example using CTRL # 58

RAW data

Filtered data

Position in read (bp)

Position in read (bp)

RNA SEQUENCING: DIFFERENT ANALYTICAL PIPELINES FOR RNA-SEQ

A survey of best practices for RNA-seq data analysis

There is no optimal pipeline for the variety of different applications and analysis scenarios in which RNA-seq can be used.

Every RNA-seq – aka, **digital RNA sequencing** - experimental scenario could potentially have different optimal methods for

- transcript mapping (= read alignment against a known genome, "new" transcript discovery, ...)
- transcript quantification
- *normalization*, and ultimately
- differential expression analysis

Conesa, Ana, Madrigal, Pedro, Tarazona, Sonia, et al. 2016. A survey of best practices for RNA-seq data analysis. *Genome Biology*, 17, 13.

Impact of RNA-seq data analysis algorithms on gene expression estimation and downstream prediction

= 278 RNA-SEQ PIPELINES

Good-Performing RNA-seq Pipelines for Various Applications

RNA-seq Application	Metric	RNA-seq Pipelines						
Accurate estimation of relative gene expression with benefit for differentially expressed gene detection	Accuracy (Deviation from qPCR)	 Bowtie + RSEM + Median Bowtie 2 Single-Hit + [Count-Based/Cufflinks/RSEM] + Median Bowtie 2 Multi-Hit + RSEM + Median Bowtie 2 Multi-Hit + RSEM + Median BWA + [Count-Based/RSEM] + Median GSNAP Spliced [Single-/Multi-Hit] + [Count-Based/Cufflinks] + Median GSNAP Un-spliced Multi-Hit + RSEM + Median MAGIC [Single-/Multi-Hit] + [Count-Based/Cufflinks] + Median MAGIC [Single-/Multi-Hit] + Count-Based + Median MAGIC [Single-/Multi-Hit] + Count-Based + Median STAR + Count-Based + Median TopHat [Single-/Multi-Hit] + [Count-Based/Cufflinks] + Median WHAM Single-Hit + Count-Based + Median WHAM Multi-Hit + RSEM + Median 						
Small variation in gene expression <u>across</u> all replicate libraries for a single sample	Precision (Coefficient of variation across replicate libraries)	 Bowtie2 Multi-Hit + Count-Based + [FPM/FPKM/Upper Quartile] Bowtie2 Multi-Hit + Cufflinks + RLE GSNAP Un-Spliced [Single-/Multi-Hit] + [Count-Based/Cufflinks] + [FPM/FPKM/Upper Quartile/RLE] GSNAP Un-Spliced [Single-/Multi-Hit] + Cufflinks + TMM 						
Small within-sample variation in gene expression across all replicate libraries compared with between- sample variation	Reliability (Intraclass [intra-sample] correlation for grouped data)	 Bowtie2 [Single-/Multi-Hit] + [Count-Based/Cufflinks/RSEM] + Median BWA + [Count-Based/Cufflinks/RSEM] + Median GSNAP Spliced [Single-/Multi-Hit] + [Count-Based/Cufflinks] + Median MAGIC [Single-/Multi-Hit] + Count-Based + Median MapSplice + [Count-Based/Cufflinks] + Median MapSplice + [Count-Based/Cufflinks] + Median MapSplice + [Count-Based/Cufflinks] + Median 						

Tong, L., Wu, P. Y., Phan, J. H., et al. 2020. Impact of RNA-seq data analysis algorithms on gene expression estimation and downstream prediction. *Sci Rep*, 10, 17925.

RNA-seq informatics

- Filter out rRNA, tRNA, mitoRNA
- Align to genome
- Find splice junction fragments (join exon boundaries)
- Differential expression
- Alternatively spliced transcripts
- Novel genes/exons
- Sequence variants (SNPs, indels, translocations)
- Allele-specific expression

RNA-sequencing pipeline = the original TUXEDO workflow

Real data generally support existing annotation

RNA-seq informatics

- Filter out rRNA, tRNA, mitoRNA
- Align to genome
- Find splice junction fragments (join exon boundaries)
- Alternatively spliced transcripts
- Differential expression
- Novel genes/exons
- Sequence variants (SNPs, indels, translocations)
- Allele-specific expression

Alternative Splicing

Map reads to exons & junctions = mapping <u>transcripts</u>, NOT genes

In RNA sequencing analyses we DO NOT usually use the absolute # of reads (read counts), but we use a normalized measure known as FPKM (Fragments Per Kilobase of exon per Million fragments mapped) to allow for undistorted comparisons across subjetcs

Pertea et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nature Biotechnology*, 33, 290-295.

Step 5: the read are aligned against a reference genome

IGV visualization of a RNA-seq analysis: coverage and reads display along the MEF2C gene

IGV visualization of a RNA-seq analysis: coverage and reads display along the MEF2C gene

(a) The **coverage plot** shows the sum of mapped reads at each position as grey peaks. In the middle, each read is displayed where it maps. The blue lines indicate the junction events (or splice sites)

(b) **Sashimi plot** showing the coverage in red with the arcs representing the splice junctions. The numbers refer to the number of reads spanning the junctions. On the bottom, the different groups of linked boxes represent the different transcripts from the genes at this location that are present in the GTF file

A survey of best practices for RNA-seq data analysis

Conesa, Ana, Madrigal, Pedro, Tarazona, Sonia, et al. 2016. A survey of best practices for RNA-seq data analysis. *Genome Biology*, 17, 13.

Impact of RNA-seq data analysis algorithms on gene expression estimation and downstream prediction

= 278 RNA-SEQ PIPELINES

Good-Performing RNA-seq Pipelines for Various Applications

RNA-seq Application	Metric	RNA-seq Pipelines						
Accurate estimation of relative gene expression with benefit for differentially expressed gene detection	Accuracy (Deviation from qPCR)	 Bowtie + RSEM + Median Bowtie 2 Single-Hit + [Count-Based/Cufflinks/RSEM] + Median Bowtie 2 Multi-Hit + RSEM + Median Bowtie 2 Multi-Hit + RSEM + Median BWA + [Count-Based/RSEM] + Median GSNAP Spliced [Single-/Multi-Hit] + [Count-Based/Cufflinks] + Median GSNAP Un-spliced Multi-Hit + RSEM + Median MAGIC [Single-/Multi-Hit] + [Count-Based/Cufflinks] + Median MAGIC [Single-/Multi-Hit] + Count-Based + Median MAGIC [Single-/Multi-Hit] + Count-Based + Median STAR + Count-Based + Median TopHat [Single-/Multi-Hit] + [Count-Based/Cufflinks] + Median WHAM Single-Hit + Count-Based + Median WHAM Multi-Hit + RSEM + Median 						
Small variation in gene expression <u>across</u> all replicate libraries for a single sample	Precision (Coefficient of variation across replicate libraries)	 Bowtie2 Multi-Hit + Count-Based + [FPM/FPKM/Upper Quartile] Bowtie2 Multi-Hit + Cufflinks + RLE GSNAP Un-Spliced [Single-/Multi-Hit] + [Count-Based/Cufflinks] + [FPM/FPKM/Upper Quartile/RLE] GSNAP Un-Spliced [Single-/Multi-Hit] + Cufflinks + TMM 						
Small within-sample variation in gene expression across all replicate libraries compared with between- sample variation	Reliability (Intraclass [intra-sample] correlation for grouped data)	 Bowtie2 [Single-/Multi-Hit] + [Count-Based/Cufflinks/RSEM] + Median BWA + [Count-Based/Cufflinks/RSEM] + Median GSNAP Spliced [Single-/Multi-Hit] + [Count-Based/Cufflinks] + Median MAGIC [Single-/Multi-Hit] + Count-Based + Median MapSplice + [Count-Based/Cufflinks] + Median MapSplice + [Count-Based/Cufflinks] + Median MapSplice + [Count-Based/Cufflinks] + Median 						

Tong, L., Wu, P. Y., Phan, J. H., et al. 2020. Impact of RNA-seq data analysis algorithms on gene expression estimation and downstream prediction. *Sci Rep*, 10, 17925.

Impact of RNA-seq data analysis algorithms on gene expression estimation and downstream prediction

Tong, L., Wu, P. Y., Phan, J. H., et al. 2020. Impact of RNA-seq data analysis algorithms on gene expression estimation and downstream prediction. *Sci Rep*, 10, 17925.

Analysis workflow of publicly available RNA sequencing datasets

Step 1

Step 2

datasets

Dataset selection

Æ

Browse public repositories for eligible

Download clinical and sequencing data

Data analysis

2 days

Delineate your eligibility criteria

Sanchis et al., STAR Protocols 2, 100478 2021 https://doi.org/10.1016/j.xpro.2021.100478

Sanchis, P., Lavignolle, R., Abbate, M., et al. 2021. Analysis workflow of publicly available RNA-sequencing datasets. *STAR Protoc*, 2, 100478.

Before you begin

2 hours

and packages

Bioconductor

Download and install: R. Rstudio

Counts and clinical

RNA SEQUENCING: THE CHOICE OF A SPECIFIC ANALYTICAL PIPELINE DEPENDS ON THE COMPLEXITY OF THE TRANSCRIPTOME

Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis

Corchete, L. A., Rojas, E. A., Alonso-Lopez, D., et al. 2020. Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. *Sci Rep*, 10, 19737

Transcripts complexity ALOX12, K=6

	Cluster	Transcript	pval	qval	
1	cluster 1	118180	0.005537547	0.03322528	118166
2	cluster 2	118182, 118165	0.454418905	0.55115251	118163 118181
3	cluster 3	118177	0.414217008	0.55115251	118169
4	cluster 4	118181	0.602722552	0.60272255	118164
5	cluster 5	118166, 118163	0.459293760	0.55115251	118180
6	cluster 6	118164, 118167, 118169	0.269000193	0.55115251	118182 118165

MSTRG.48499: transcripts clustered with kmeans, k=6

genomic position

Transcripts complexity ALOX12, K=6

Transcripts complexity MEF2C = 15 transcripts & counting

														FIOLEIII COUIIIg - LI FA7 (5524
			-											bp) only human and it is in a
5	88722489	88883181		MEF2C	236486	mediumpurp	0.57469151	0.00019921	MSTRG.98135	transcript:ENST00000508569	10	1882	MEF2C	highly transcribed region
5	89418807	89466398	+	MEF2C-AS1	236544	salmon	-0.5461187	0.00047143	MSTRG.98141	transcript:ENST00000508742	3	679	MEF2C-AS1	
5	88722837	88729519	-	MEF2C	236491	saddlebrown	-0.5288615	0.00076495	MSTRG.98135	transcript:ENST00000510980	3	527	MEF2C	Retained intron - shortest
5	88880844	88881264	-	MEF2C	236511	green	0.50830235	0.00131805	MSTRG.98135	transcript:ENST00000629847	1	421	MEF2C	Processed transcript
5	88720829	88883184	-	MEF2C	236481	mediumpurp	0.47950018	0.00267435	MSTRG.98135	transcript:ENST00000510942	10	3446	MEF2C	
5	88804526	88883174	-	MEF2C	236503	lightcyan	-0.214636	0.20206241	MSTRG.98135	transcript:ENST00000511086	3	689	MEF2C	
5	88722498	88749115	-	MEF2C	236488	darkgrey	0.2100348	0.21213528	MSTRG.98135	transcript:ENST00000627717	5	815	MEF2C	
5	88804770	88824275	-	MEF2C	236504	lightgreen	0.14291944	0.39875254	MSTRG.98135	transcript: ENST00000509373	2	573	MEF2C	
5	88731437	88749124	-	MEF2C	236492	tan	-0.1333192	0.4314948	MSTRG.98135	transcript: ENST00000515715	2	520	MEF2C	
5	88761023	88827158	-	MEF2C	236499	white	0.12439238	0.46323188	MSTRG.98135	transcript: ENST00000507984	4	623	MEF2C	
5	88731852	88824340	-	MEF2C	236494	greenyellow	0.09637388	0.57042721	MSTRG.98135	transcript: ENST00000506716	7	854	MEF2C	
5	88965875	89168668	+	MEF2C-AS1	236531	red	0.09637388	0.57042721	MSTRG.98141	transcript:ENST00000514571	4	594	MEF2C-AS1	
5	88731805	88883147	-	MEF2C	236493	white	0.08383415	0.62179311	MSTRG.98135	transcript:ENST00000513252	7	1063	MEF2C	
5	88823861	88883224	-	MEF2C	236507	darkgreen	NA	NA	MSTRG.98135	transcript: ENST00000509349	3	582	MEF2C	
5	88889308	88943343	+	MEF2C-AS1	236517	sienna3	NA	NA	MSTRG.98141	transcript:ENST00000513704	3	563	MEF2C-AS1	

Ductoin coding 11 DAZ (FF24

Differential expression of MEF2C

T3 = retained intron - regulator

T1 = protein coding

MEF2C

MEF2C

BOLA2

combined

C4A and an intronic LTR in Schizophrenia

C4A and an intronic LTR in Schizophrenia

